• Title/Summary/Keyword: Radiation intensity

Search Result 963, Processing Time 0.03 seconds

Deep inspiration breath-hold (DIBH) 적용한 림프절이 포함된 왼편 유방암의 방사선 치료계획에 따른 주변 장기 선량 평가

  • Jeong, Da-Lee;Gang, Hyo-Seok;Choe, Byeong-Jun;Park, Sang-Jun;Lee, Geon-Ho;Lee, Du-Sang;An, Min-U;Jeon, Myeong-Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • Purpose: On the left side, breast cancer patients have more side effects than those on the right side because of unnecessary doses in normal organs such as heart and lung. DIBH is performed to reduce this. To evaluate the dose of peripheral organs in the left breast cancer including supraclavicular lymph nodes and internal mammary lymph nodes according to the treatment planning method of Conventional Radiation Therapy, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy. Materials and Methods: We performed CT-simulation using free breathing and deep inspiration breath-hold technique for 8 patients including left supraclavicular lymph nodes and internal mammary lymph nodes. Based on the acquired CT images, the contour of the body is drawn and the convention is performed so that $95%{\leftarrow}PTV$, $Dmax{\leftarrow}110%$. Conventional Radiation Therapy used a one portal technique on the supraclavicular lymph node and used a field in field technique tangential beam on the breast. Intensity Modulated Radiation Therapy was composed of 7 static fields. Volumetric Modulated Arc Therapy was planned using 2 ARC with a turning radius of $290^{\circ}$ to $179^{\circ}$. The peripheral normal organs dose was analyzed by referring to the dose volume of Eclipse. Results: By applying the deep inspiration breath-hold technique, the mean interval between the heart and chest wall increased $1.6{\pm}0.6cm$. The mean dose of lung was $19.2{\pm}1.0Gy$, which was the smallest value in Intensity Modulated Radiation Therapy. The V30 (%) of the heart was $2.0{\pm}1.9$, which was the smallest value in Intensity Modulated Radiation Therapy. In the left anterior descending coronary artery, the dose was $25.4{\pm}5.4Gy$, which was the smallest in Intensity Modulated Radiation Therapy. The maximum dose value of the Right breast was $29.7{\pm}4.3Gy$ at Intensity Modulated Radiation Therapy. Conclusion: When comparing the values of surrounding normal organs, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy were applicable values for treatment. Among them, Intensity Modulated Radiation Therapy is considered to be a suitable treatment planning method.

  • PDF

Advances and Challenges in Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma

  • Qu, Song;Liang, Zhong-Guo;Zhu, Xiao-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1687-1692
    • /
    • 2015
  • Nasopharyngeal carcinoma is an endemic disease within specific regions in the world. Radiotherapy is the main treatment. In recent decades, intensity-modulated radiation therapy has undergone a rapid evolution. Compared with two-dimensional radiotherapy and/or three-dimensional conformal radiotherapy, evidence has shown it may improve quality of life and prognosis for patients with nasopharyngeal carcinoma. In addition, helical tomotherapy is an emerging technology of intensity-modulated radiation therapy. Its superiority in dosimetric and clinical outcomes has been demonstrated when compared to traditional intensity-modulated radiation therapy. However, many challenges need to be overcome for intensity-modulated radiation therapy of nasopharyngeal carcinoma in the future. Issues such as the status of concurrent chemotherapy, updating of target delineation, the role of replanning during IMRT, the causes of the main local failure pattern require settlement. The present study reviews traditional intensity-modulated radiation therapy, helical tomotherapy, and new challenges in the management of nasopharyngeal carcinoma.

Intensity-modulated radiation therapy: a review with a physics perspective

  • Cho, Byungchul
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

Ultransonic Effect on the Break-Down Characteristics of Liquid Dielectrics (액체유도체의 절연특성에 미치는 초음파의 영향)

  • Choon Saing Jhoun;Hong Keun Kim;Bong Sik Hong
    • 전기의세계
    • /
    • v.26 no.4
    • /
    • pp.61-67
    • /
    • 1977
  • This paper treats the Ultrasonic effects on the break down characteristics of Liquid Dielectric Material 1) Relative Dielectric constant, Es of Liquid Dielectric Material at a constant temperature decreases in proportion to the irradiated time of Ultrasonic radiation and its intensity, and reaches to a certain saturated value. The saturated value varies with the intensity of Ultrasonic radiation. 2) Power factor of Liquid Dielectric Material at a constant temperature increases in proportion tothe irradiated time of Ultrasonic radiation and its intensity, and reaches to a certain saturated value. The saturated value varies with the intensity of Ultrasonic radiation. 3) Relative resistance of Liquid Dielectric Material at a constant temperature decrease with the irradiated time of Ultrasonic radiation, but the effect of its intensity is very irregular. 4) Break-down strength of Liquid Dielectric Material, at a constant temperature decreases with the irradiated time of Ultrasonic radiation and its intensity, and then reaches to a saturated value.

  • PDF

Quality Assurance in Intensity Modulated Radiation Theray (세기조절방사선치료의 정도관리)

  • Kim, Sung-Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • Intensity-modulated radiation therapy (IMRT) is believed to be one of the best radiation treatment techniques. IMRT is able to deliver fatal doses of radiation to the tumor region with minimal exposure of critical organs. It is essential to have a comprehensive quality assurance program to assure precision and accuracy in treatment, due to the character of IMRT. We applied quality assurance technique to the Eclipse treatment planning system and sought to determine its effectiveness in patient treatment planning. An acrylic phantom, film, and an ionization chamber were used in this study.

  • PDF

Acoustic Radiation Characteristics from Flexible Steel Plate Excited by Acoustic Loading in an Rectangular enclosure (음향 가진된 밀폐계의 유연한 평판의 음향 방사 특성에 관한 연구)

  • 김상헌;안지훈;오재응
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.457-466
    • /
    • 1997
  • The experimental and analytical study was conducted to determine the noise transmission characteristics of acoustically loaded steel plate of rectangular enclosure and to investigate the sound radiation characteristics through out the enclosure. The vibrations of acoustically loaded plate give rise to sound radiations and generate the reverberant space that the sound field exists very close to a vibrating plate. Acoustic transmission loss is measured from the incident intensity into the plate and the transmitted intensity through out the plate. Sound radiation patterns are measured from both acoustic intensity technique and surface intensity technique. Those resultant patterns and vibrational modes are vital in understanding the relations between vibration and noise in the near field out of vibrating plate.

  • PDF

Intensity Modulated Radiation Therapy of Brain Tumor

  • Kim, Sung-Kyu;Kim, Myung-Se
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.61-64
    • /
    • 2002
  • As intensity modulated radiation therapy compared with conventional radiation therapy, tumor target dose increased and normal tissues and critical organs dose reduced. In brain tumor, treatment planning of intensity modulated radiation therapy was practiced in 4MV, 6MV, 15MV X-ray energy. In these X-ray energy, was considered the dose distribution and dose volume histogram. As 4MV X-ray compared with 6MV and 15MV, maximum dose of right optic-nerve increased 10.1 %, 8.4%. Right eye increased 5.2%, 2.7%. And left optic-nerve, left eye, optic chiasm and brainstem incrased 1.7% - 5.2%. Even though maximum dose of PTV and these critical organs show different from 1.7% - 10.1% according to X-ray energies, these are a piont dose. Therefore in brain tumor, treatment planning of intensity modulated radiation therapy in 9 treatment field showed no relation with energy dependency.

  • PDF

Study on the Sound Radiaton Characteristics of Trains by Sound Intensity Method (음향 인텐시티법을 이용한 주행열차의 음향방사특성의 검토)

  • 주진수;김재철
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.603-608
    • /
    • 1998
  • In order to obtain basic data for the prediction of railway noise propagation, the noise radiation characteristics (source position, radiation directivity, etc) of trains were measured by using the sound intensity method. The measurements were performed at a side of railway by setting an intensity-probe array. As the measurement results, it was found that rolling noise due to interaction between wheel and rail and motor noise radiation from the lower part of train are dominant. The location of main sound sources can be described as being at the height of 0.1m in the center line of track, and the radiation directivity in the cross section of actually running trains are presented as a dipole source.

  • PDF

A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

  • Jung, Sang Hoon;Yu, Jeong Il;Park, Hee Chul;Lim, Do Hoon;Han, Youngyih
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.64-75
    • /
    • 2016
  • Purpose: In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. Materials and Methods: In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. Results: The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median $R^2$ of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Conclusion: Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer.

Measurement of Radiation Intensity of the High-Pressure and Large-Current Arc (고압 대전류 아크의 복사강도 측정)

  • Song, Ki-Dong;Oh, Yeon-Ho;Chong, Jin-Kyo;Cho, Yong-Sung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.555-563
    • /
    • 2006
  • This paper presents the measured radiation intensity of high-pressure and large-current arc with the current. In order to measure the radiation intensity of large-current arc, a model circuit breaker was specially designed and manufactured and the method using an astronomical telescope was utilized after various measuring methods were investigated. A trigger system was designed and fabricated to coincide the time of desired current with the exposure time of 1ms of the spectroscope. A high-speed camera was used to investigate the shape and behavior of the arc and the captured results have been used to calculate the radiation energy. The calculated arc temperature with Boltzmann plot method using the measured radiation intensity have $18,000{\sim}27,000K$ to the current $4kA{\sim}15kA$. And also, using the calculated arc temperature and the captured arc shape the radiation energy of the current $5kA{\sim}15kA$ were calculated with $8{\times}10^5{\sim}4.0{\times}10^6W/m$ respectively.