• 제목/요약/키워드: Radiation heat loss

검색결과 164건 처리시간 0.024초

복사열전달을 고려한 상호작용하는 예혼합화염의 수치해석 (Numerical Study of Interacting Premixed Flames Including Gas Phase Radiation)

  • 임인권;정석호
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.858-867
    • /
    • 1995
  • Characteristics of premixed flames in counter-flow system are numerically studied using a detailed chemical reaction mechanism including gas phase radiation. Without radiation effect accounted, low CO and high NO$_{x}$ emission indices are observed, when strain rate decreases, due to increased residence time and higher flame temperature. Higher NO$_{2}$ production has been also observed when two premixed flames are interacting or cold air stream is mixed with burned gas. The rate of NO$_{x}$ production and destruction is dependent upon the diffusional strength of H and OH radicals, the existence of NO and the concentration of HO$_{2}$. For radiating flames, the peak temperature and NO$_{x}$ production rate decreases as the strain rate decreases. At high strain rate, it is found that the effect of radiation on flame is little due to its negligible radiating volume. It is also found that NO$_{x}$ production from the interacting premixed flame is reduced due to reduced temperature resulting from radiation heat loss. It is concluded that the radiation from gas has significant effect of flame structure and on emission characteristics.ristics.

지중가온이 온실의 난방부하에 미치는 영향 (The Effect of Soil Warming on the Greenhouse Heating Load)

  • 남상운
    • 한국농공학회논문집
    • /
    • 제48권5호
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

방사소음 및 투과소음에 대한 승용차량 대시패널의 설계인자 별 영향도 분석 (Evaluation of Design Variables to Improve Sound Radiation and Transmission Loss Performances of a Dash Panel Component of an Automotive Vehicle)

  • 유지우;채기상;박철민;서진관;이기용
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.22-28
    • /
    • 2012
  • While a dash panel component, close to passengers, plays a very important role to protect heat and noise from a power train, it is also a main path that transfers vibration energy and eventually radiates acoustic noise into the cavity. Therefore, it is important to provide optimal design schemes incorporating sound packages such as a dash isolation pad and a floor carpet, as well as structures. The present study is the extension of the previous investigation how design variables affect sound radiation, which was carried out using the simple plate and framed system. A novel FE-SEA hybrid simulation model is used for this study. The system taken into account is a dash panel component of a sedan vehicle, which includes front pillars, front side members, a dash panel and corresponding sound packages. Design variables such as panel thicknesses and sound packages are investigated how they are related to two main NVH indexes, sound radiation power(i.e. structure-borne) and sound transmission loss(i.e. air borne). In the viewpoint of obtaining better NVH performance, it is shown that these two indexes do not always result in same tendencies of improvement, which suggests that they should be dealt with independently and are also dependent on frequency regions.

복사열을 이용한 소나무와 굴참나무 낙엽의 연소특성 분석 (A Combustion Characteristic Analysis of Quercus Variabilis and Pinus Densiflora Fallen Leaves Using Radiation Heat Flux)

  • 박형주;김응식;김장환;김동현
    • 한국화재소방학회논문지
    • /
    • 제21권3호
    • /
    • pp.41-46
    • /
    • 2007
  • 본 연구에서는 지표화의 연소물질인 소나무와 굴참나무 낙엽에 대해 일정한 외부 복사열에 의한 연소특성을 분석하였다. 일정한 외부 복사열에 노출된 낙엽의 착화시간, 착화온도, 임계열유속, 질량감소속도를 측정하기 위해 낙엽의 종류별로 5개의 시료를 사용하였으며, 낙엽에 복사열을 노출시키기 위해 Mass loss calorimeter를 사용하였다. 시료 용기의 크기는 $100\;mm{\times}100\;mm{\times}12\;mm$로 소나무와 굴참나무 낙엽을 건조 후 분쇄하여 사용하였다. 연구결과, 소나무 낙엽과 굴참나무 낙엽의 시료에서 외부 복사열이 $9\;kW/m^2$ 미만에서는 착화가 발생하지 않았다. 또한, 연소시간 동안 표면온도 변화는 굴참나무 낙엽에 비해 소나무 낙엽이 더 오랜 시간동안 고온을 유지함을 알 수 있었으며, 최대질량감소속도와 평균질랑감소속도에 있어서는 굴참나무 낙엽이 소나무 낙엽 보다 더 빠르게 진행됨을 알 수 있었다. 향후, 연소특성에 대한 구체적인 연소반응 특성에 대한 실험연구가 필요할 것으로 판단된다.

해양부이 자료를 이용한 황해 남동부 해역 표층 열속 산출 (Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data)

  • 김선복;장경일
    • 한국해양학회지:바다
    • /
    • 제19권3호
    • /
    • pp.169-179
    • /
    • 2014
  • 황해 남동부 해역에 설치한 해양부이(YSROB)에서 약 27개월간 관측된 장파, 단파 복사량을 포함한 대기, 해양 변수와 COARE 3.0 알고리즘을 이용하여 월평균 해양-대기간 열속을 산출하고 기존 연구결과와 비교하였다. YSROB 위치에서 열속은 순 단파복사(Qi)에 의해 해양은 대기로부터 열을 얻고 순 장파복사($Q_b$), 현열($Q_h$), 잠열($Q_e$)에 의해서 열손실이 일어난다. 전체 열손실 중 $Q_e$에 의한 손실이 51%로 가장 크게 나타났으며 $Q_b$$Q_h$에 의한 손실은 각각 34%, 15% 이다. 순열속($Q_n$)은 $Q_i$가 최대인 5월에 최대($191.4W/m^2$)이며 모든 열속 성분이 최소인 12월에 최소($-264.9W/m^2$)이다. 연평균 $Q_n$$1.9W/m^2$ 이지만 관측기기의 정확도에 의한 오차산정 결과(최대 ${\pm}19.7W/m^2$)를 고려하면 무시할 정도로 작다. YSROB과 동일한 위치에서의 기존 월별 열속 산출 결과는 YSROB에서 실측값에 기반한 열속에 비해 여름철 $Q_i$가 약 $10{\sim}40W/m^2$ 과소 평가된 반면에 겨울철에는 $Q_e$$Q_h$에 의한 열 손실이 각각 약 $50W/m^2$, $30{\sim}70W/m^2$ 과다하게 산출되었다. 이로 인하여 해양이 열을 얻는 4월~8월에는 기존 연구에서의 열 획득량이 본 연구 결과보다 적게 나타나며, 해양이 열을 잃는 겨울철에는 기존 연구에서의 해양으로부터의 열 손실이 본 연구 결과에 비해 크게 나타난다. 특히, 12월과 1월의 $Q_n$ 차이는 약 $70{\sim}130W/m^2$에 달한다. 장기적인 재분석장(MERRA) 분석 결과에 의하면 이와 같은 월평균 열속의 차이는 연변동 등 시간 변동에 의한 것이 아니라 열속 산출 시 사용된 자료의 부정확성에 기인하는 것으로 판단된다. 본 연구 결과로부터 기존의 기후적인 열속을 연구에 활용하거나 수치모델에 사용함에 있어 주의가 요망된다.

HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측 (Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model)

  • 신창민;나은혜;김덕길;김경현
    • 한국물환경학회지
    • /
    • 제30권6호
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

HVDC 냉각시스템의 전기전도현상 및 부식현상 기술 분석과 스위칭 소자의 방열판 최적 설계 검토 (The Analysis of Electrical Conduction and Corrosion Phenomena in HVDC Cooling System and the Optimized Design of the Heat Sink of the Semiconductor Devices)

  • 김찬기;박창환;김장목
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.484-495
    • /
    • 2017
  • In HVDC thyristor valves, more than 95% of heat loss occurs in snubber resistors and valve reactors. In order to dissipate the heat from the valves and to suppress the electrolytic current, water with a high heat capacity and a low conductivity of less than 0.2 uS/cm must be used as a refrigerant of the heat sink. The cooling parts must also be arranged to reduce the electrolytic current, whereas the pipe that supplies water to the thyristor heat sink must have the same electric potential as the valve. Corrosion is mainly caused by electrochemical reactions and the influence of water quality and leakage current. This paper identifies the refrigerants involved in the ionization, electrical conductivity, and corrosion in HVDC thyristor valves. A method for preventing corrosion is then introduced. The design of the heat sink with an excellent heat radiation is also analyzed in detail.

금속매쉬에서 천연가스/공기 표면연소의 화염안정성에 관한 실험적 연구 (An Experimental Study on the Flame Stability of Natural Gas/Air Mixture on the Metal Mesh)

  • 유현석;이현찬;이중성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.49-53
    • /
    • 2001
  • A conventional flame type gas combustion major portion of heat is transferred to the body by convection due to small radiant ability of the gas flame. Increasing the radiation component of heat flux in the combustion zone allows to augment the efficiency of gas utilization. Such effect can be reached by using radiative gas burner applied to metal mesh combustion. Basically the gas radiant burner consists of metallic mesh of high heat resisting steels. In terms of this regards, we have made the burner consisted of metal mesh and measured the radiative flame stability of natural gas/air mixture on the metal mesh burner. The pressure loss through the metal mesh is defined by pressure-velocity slope. The more increased the pressure-velocity slope of the metal mesh is, the wider the stable zone of radiave flame on the metal mesh burner is. And the augmentation of mixture flowrate through the metal mesh make narrow the permissible range of equivalence ratio.

  • PDF

지구온난화가 대청호 수온 및 성층구조에 미치는 영향예측 (Forecasting the Effect of Global Warming on the Water Temperature and Thermal Stratification in Daecheong Reservoir)

  • 차윤철;정세웅;윤성완
    • 환경영향평가
    • /
    • 제22권4호
    • /
    • pp.329-343
    • /
    • 2013
  • According to previous studies, the increased air temperature can lead to change of thermal stratification structure of lakes and reservoirs. The changed thermal stratification may result in alteration of materials and energy flow. The objective of this study was to predict the effect of climate change on the water temperature and stratification structure of Daecheong Reservoir, located in Geum River basin of Korea, using a three-dimensional(3D) hydrodynamic model(ELCOM). A long-term(100 years) weather data set provided by the National Institute of Meteorological Research(NIMR) was used for forcing the 3D model. The model was applied to two different hydrological conditions, dry year(2001) and normal year(2004). It means that the effect of air temperature increase was only considered. Simulation results showed that the surface water temperature of the reservoir tend to increase in the future, and the establishment of thermal stratification can occur earlier and prolonged longer. As a result of heat flux analysis, the evaporative heat loss can increase in the future than now and before. However, the convective heat loss and net long wave radiation from water surface decreased due to increased air temperature.

메탄 산소 연소에 있어서 화염 소화에 대한 연구 (A Study on Flame Extinction in Oxymethane Combustion)

  • 김태형;권오붕;박정;길상인;윤진한;박종호
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.34-41
    • /
    • 2015
  • Oxy-methane nonpremixed flames diluted with $CO_2$ were investigated to clarify impact of radiation heat loss and chemical effects of additional $CO_2$ to oxidizer stream on flame extinction. Flame stability maps were presented with functional dependencies of critical diluents mole fraction upon global strain rate at several oxidizer stream temperatures in $CH_4-O_2/N_2$, $CH_4-O_2/CO_2$, and $CH_4-O_2/CO_2/N_2$ counterflow flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in nonpremixed $CH_4-O_2/N_2$ diffusion flame, whereas those are significant at low strain rate and are negligible at high strain rate (> $200s^{-1}$) in $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ counterflow flames. Chemical effects of additional $CO_2$ to oxidizer stream on the flame extinction curves were appreciable in both $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of nonpremixed oxy-methane flames permitting air infiltration when the baseline flame was taken to nonpremixed $CH_4-O_2/N_2$ flame.