• Title/Summary/Keyword: Radiation exposure

Search Result 1,889, Processing Time 0.032 seconds

DEVELOPMENT OF THE DUAL COUNTING AND INTERNAL DOSE ASSESSMENT METHOD FOR CARBON-14 AT NUCLEAR POWER PLANTS

  • Kim, Hee-Geun;Kong, Tae-Young;Han, Sang-Jun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.55-64
    • /
    • 2009
  • In a pressurized heavy water reactor (PHWR), radiation workers who have access to radiation controlled areas submit their urine samples to health physicists periodically; internal radiation exposure is evaluated by the monitoring of these urine samples. Internal radiation exposure at PHWRs accounts for approximately 20 $\sim$ 40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Carbon-14 is not a dominant nuclide in the radiation exposure of workers, but it is one potential nuclide to be necessarily monitored. Carbon-14 is a low energy beta emitter and passes relatively easily into the body of workers by inhalation because its dominant chemical form is radioactive carbon dioxide ($^{14}CO_2$). Most inhaled carbon-14 is rapidly exhaled from the worker's body, but a small amount of carbon-14 remains inside the body and is excreted by urine. In this study, a method for dual analysis of tritium and carbon-14 in urine samples of workers at nuclear power plants is developed and a method for internal dose assessment using its excretion rate result is established. As a result of the developed dual analysis of tritium and carbon-14 in urine samples of radiation workers who entered the high radiation field area at a PHWR, it was found that internal exposure to carbon-14 is unlikely to occur. In addition, through the urine counting results of radiation workers who participated in the open process of steam generators, it was found that the likelihood of internal exposure to either tritium or carbon-14 is extremely low at pressurized water reactors (PWRs).

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

A STUDY ON THE SCATTER RADIATION AFFECTING THE DENTAL X-RAY FILM (산란 방사선이 치과용 방사선 필름에 미치는 영향에 관한 연구)

  • Park Eung Chun;Kim Jae Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.1
    • /
    • pp.87-94
    • /
    • 1992
  • The purpose of this study was to evaluate the effect of scatter radiation to dental x-ray film with long time-exposure in the different structures of the tooth, by using pinhole camera. For this study, pinhole camera, skull with tooth, and pocket dosimeter were used. The radiation with 70 and 90kVp and exposure time (minimum: 2.5 min., maximum 10 hrs.) was projected to the film in the pinhole camera. And density of the obtained x-ray film was measured with densitometer. In the intra-oral film taking, the amount of exposure of the scatter radiation affecting the thyroid gland area was measured with the dosimeter at the thyroid gland. The density of radiographs was compared in radiation projected with or without the metal cone of dental machine. The effect of the back scatter radiation to the film was also evaluated when the lead foil was removed. The obtained results were as follows: 1. A pinhole camera was a valuable device for locating the source of x-ray. 2. The scatter radiation affected the dental x-ray film when the radiation source was exposed. more than 5 hours'. In that case, the density of the scatter radiation could be observed visually. 3. The scatter radiation caused by short exposure of dental radiation didn't affect the diagnostic quality of the dental x-ray film. 4. The differences of densities between the tooth and the soft tissue according to exposure time showed 0.16 in 5 hours' exposure & 0.17 in 10 hours' exposure at 70 kVp & 0.12 in 5 hours' exposure & 0.13 in 10 hours' exposure at the 90kVp. 5. The differences of densities between the tooth and the soft tissue according to kVp showed no difference between 5 hours' exposure of tooth at 70 kVp and soft tissue at 90 kVp, but showed 0.05 high density in tooth when 10 hours' exposure at 90 kVp. 6. No difference of density was on radiographs taken with or without dental machine cone. 7. Back scatter radiation was recorded image of radiographs for only 3 min. 8. The amounts of the scatter radiation exposed to the thyroid gland in intraoral film taking were 1.12 mr in upper anterior, 0.55 mr in upper posterior, 2.75 mr in lower anterior, and 1.92 mr in lower posterior teeth.

  • PDF

A Study on the Measurement of the Personal Exposure Dose by Film Badge Dosimeter (필름배지선량계에 의한 개인피폭선량 측정에 관한 연구)

  • Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.37-50
    • /
    • 1994
  • The experimental evaluation of exposure conversion formula using the relationship between optical photo-density, exposure dose and the quality of radiation characteristics of radiation energy to X-ray and ${\gamma}-rays$. The film badge dosimeter is analysed by exposure conversion formula which evaluate image fading characteristics for development time and directional characteristics for incident beam angle. In conclusion, exposure conversion formula evaluated of this study is satisfied with quality decision criterion of the film badge dosimeter.

  • PDF

Occupational Radiation Exposure of Emergency Medical Technicians in Emergency Medical Centers in Korea (우리나라 응급의료센터 응급구조사의 직업적 방사선 노출)

  • Lee, Hyeongyeong;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.3
    • /
    • pp.170-179
    • /
    • 2017
  • Objectives: This study aims to investigate the occupational radiation exposures of emergency medical technicians(EMTs) in emergency medical centers in Korea. The results will provide a basis for developing prevention programs to minimize adverse health effects relating to radiation exposure among emergency medical technicians working in this area. Methods: Radiation exposure doses were measured for twenty-two EMTs working in six emergency medical centers. Thermo Luminescent Dosimeters(TLD) were placed on three representative body parts, including chest, neck, and a finger. Measurements were conducted over the entire working hours of the participants for foor weeks. Dosimeters were analyzed according to a standard method by a KFDA-designated lab. Detection rate, annual radiation exposure dose, and relative levels to dose limit were derived based on the measured doses from the dosimeters. SPSS/Win 18.0 software(IBM, US) was used for statistical analysis. Results: Detection rates were 45.5%, 36.4%, and 45.5% for the dosimeters sampled from chest, neck, and a finger, respectively. The average annual doses were $2.39{\pm}3.44mSv/year$(range 0.38-10.0 mSv/year) for the chest, $2.72{\pm}3.05mSv/year$(2.00-11.34) for the neck, and $20.98{\pm}17.57mSv/year$(1.25-53.50) for the hand dose. The average annual eye dose was estimated to $3.61{\pm}2.37mSv/year$(1.50-8.34). The exposure dose levels of EMTs were comparable to those of radiologists, who showed relatively higher radiation dose among health care workers, as reported in another study. Conclusions: EMTs working in emergency medical centers are considered to be at risk of radiation exposure. Although the radiation exposure dose of EMTs does not exceed the dose limit, it is not negligible comparing to other professionals in health care sectors.

A Study on Retrospective of External Radiation Exposure Dose by Optically Stimulated Luminescence of Smart Chip Card (스마트칩 카드을 이용한 광 자극 발광 특성 연구)

  • Park, Sang-Won;Yoo, Se-Jong
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.379-385
    • /
    • 2019
  • Radiation is used for various purposes such as cancer therapy, research of industrial and drugs. However, in case of radiation accidents such as terrorism, collapsing nuclear plant by natural disasters like Fukushima in 2011, very high radiation does expose to human and could lead to death. For this reason, many people are concerning about radiation exposures. Therefore, assessment and research of retrospective radiation dose to human by various path is an necessary task to be continuously developed. Radiation exposure for workers in radiation fields can be generally measured using a personal exposure dosimeter such as TLD, OSLD. However, general people can't be measured radiation doses when they are exposed to radiation. And even if radiation fields workers, when they do not in possession personal dosimeter, they also can't be measured exposure dose immediately. In this study, we conduct retrospective research on reconstruction of dose after exposure by using smart chip card of personal items through Optically Stimulated Luminescence (OSL). The OSL signal of smart chip card shows linear response from 0.06 Gy to 15 Gy and results of fading rate 45 %, 48% for 24 and 48 hours due to the natural emission of radiation in sample, respectively. The minimum detectable limit (MDD) was 0.38 mGy. This values are expected to use as correction values for reconstruction of exposure dose.

Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가)

  • Lee, Dong-yeon;Kang, Yeong-rok
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

Safety Analysis of Concrete Treatment Workers in Decommissioning of Nuclear Power Plant

  • Hwang, Young Hwan;Kim, Si Young;Lee, Mi-Hyun;Hong, Sang Beom;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.349-356
    • /
    • 2022
  • Nuclear power plant decommissioning generates significant concrete waste, which is slightly contaminated, and expected to be classified as clearance concrete waste. Clearance concrete waste is generally crushed into rubble at the site or a satellite treatment facility for practical disposal purposes. During the process, workers are exposed to radiation from the nuclides in concrete waste. The treatment processes consist of concrete cutting/crushing, transportation, and loading/unloading. Workers' radiation exposure during the process was systematically studied. A shielding package comprising a cylindrical and hexahedron structure was considered to reduce workers' radiation exposure, and improved the treatment process's efficiency. The shielding package's effect on workers' radiation exposure during the cutting and crushing process was also studied. The calculated annual radiation exposure of concrete treatment workers was below 1 mSv, which is the annual radiation exposure limit for members of the public. It was also found that workers involved in cutting and crushing were exposed the most.

Radiation exposure to the eyes and thyroid during C-arm fluoroscopy-guided cervical epidural injections is far below the safety limit

  • Choi, Eun Joo;Go, Gwangcheol;Han, Woong Ki;Lee, Pyung-Bok
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.73-80
    • /
    • 2020
  • Background: The aim of this study was to evaluate radiation exposure to the eye and thyroid in pain physicians during the fluoroscopy-guided cervical epidural block (CEB). Methods: Two pain physicians (a fellow and a professor) who regularly performed C-arm fluoroscopy-guided CEBs were included. Seven dosimeters were used to measure radiation exposure, five of which were placed on the physician (forehead, inside and outside of the thyroid protector, and inside and outside of the lead apron) and two were used as controls. Patient age, sex, height, and weight were noted, as were radiation exposure time, absorbed radiation dose, and distance from the X-ray field center to the physician. Results: One hundred CEB procedures using C-arm fluoroscopy were performed on comparable patients. Only the distance from the X-ray field center to the physician was significantly different between the two physicians (fellow: 37.5 ± 2.1 cm, professor: 41.2 ± 3.6 cm, P = 0.03). The use of lead-based protection effectively decreased the absorbed radiation dose by up to 35%. Conclusions: Although there was no difference in radiation exposure between the professor and the fellow, there was a difference in the distance from the X-ray field during the CEBs. Further, radiation exposure can be minimized if proper protection (thyroid protector, leaded apron, and eyewear) is used, even if the distance between the X-ray beam and the pain physician is small. Damage from frequent, low-dose radiation exposure is not yet fully understood. Therefore, safety measures, including lead-based protection, should always be enforced.