• Title/Summary/Keyword: Radiation emergency

Search Result 215, Processing Time 0.026 seconds

Considerations of the Optimized Protective Action Distance to Meet the Korean Protective Action Guides Following Maximum Hypothesis Accidents of Major KAERI Nuclear Facilities

  • Goanyup Lee;Hyun Ki Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.52-57
    • /
    • 2023
  • Background: Korea Atomic Energy Research Institute (KAERI) operates several nuclear research facilities licensed by Nuclear Safety and Security Commission (NSSC). The emergency preparedness requirements, GSR Part 7, by International Atomic Energy Agency (IAEA) request protection strategy based on the hazard assessment that is not applied in Korea. Materials and Methods: In developing the protection strategy, it is important to consider an accident scenario and its consequence. KAERI has tried the hazard assessment based on a hypothesis accident scenario for the major nuclear facilities. During the assessment, the safety analysis report of the related facilities was reviewed, the simulation using MELCOR, MACCS2 code was implemented based on a considered accident scenario of each facility, and the international guidance was considered. Results and Discussion: The results of the optimized protective actions were 300 m evacuation and 800 m sheltering for the High-Flux Advanced Neutron Application Reactor (HANARO), the evacuation to radius 50 m, the sheltering 400 m for post-irradiation examination facility (PIEF), 100 m evacuation or sheltering for HANARO fuel fabrication plant (HFFP) facility. Conclusion: The results of the optimized protective actions and its distances for the KAERI facilities for the maximum postulated accidents were considered in establishing the emergency plan and procedures and implementing an emergency exercise for the KAERI facilities.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

The Use of Brain Computer Tomography Examination with Mild Traumatic Brain Injury in Pediatrics (일개 대학병원에서 경험한 소아의 경증 두부 외상에서 Brain CT 측정 및 효용성)

  • Kim, Ha Kyung;Kim, Jin Joo;Cho, Jin Seong;Jang, Jae Ho;Yang, Hyuk Jun;Lee, Gun
    • Journal of Trauma and Injury
    • /
    • v.27 no.3
    • /
    • pp.63-70
    • /
    • 2014
  • Purpose: In children, mild traumatic brain injuries (TBI) account for 70~90% of head injuries. Without guidelines, many of these children may be exposed to excess radiation due to unnecessary imaging. The purpose of this study was to evaluate the impact of a mild TBI guideline in imaging of pediatric patients. Methods: The medical records of all children who had head computed tomography and were admitted to our hospital with a TBI with Pediatric Glasgow Coma Scale and Glasgow Coma Scale of 14 to 15 were retrospectively reviewed and compared with PECARN Rule. Results: A total of 1260 children were included and all children checked with head computed tomography. 61 pediatrics had CT positive and presented skull fracture 40, hemorrhage 8, hemorrhagic contusion 7, and diffuse axonal injury 1. Also, 4 patients diagnosed both skull fracture and brain haemorrhage and 1 patient diagnosed both haemorrhage and haemorrhagic contusion. Conclusion: There are many pediatric traumatic patients who exposed to radiation due to CT. But, the most of results were negative. So, consider to follow the CT guideline for children and many do not require brain CT.

Radiation Protection Effects of Dendranthema Zawadskii Var. Latilobum (Maxim.) Kitam. Extracts on Blood Cells, Intestine, and Uterus of Female SD Rats Irradiated with Gamma-Ray 10 Gy (구절초 추출물이 감마선 10 Gy에 조사된 암컷 SD Rat의 혈구 및 소장, 자궁에 미치는 방사선 방호효과)

  • Sung-Hyun, Joo;Hae-Suk, Kim;Sang-Hyun, Jeong;Jae-Gyeong, Choi;Seong-Ok, Jin;Byung-In, Min
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.23-28
    • /
    • 2023
  • The purpose of this study is to see the radiation protection effect of the oral injected Dendranthema zawadskii var. latilobum (Maxim.) Kitam. extracts on the small intestine and uterus of female SD Rat as a natural radiation protection agent. The experimental group was divided into four groups: Normal Control group (NC group), Injected Dendranthema zawadskii var. latilobum (Maxim.) Kitam. extracts group (DZ group), irradiated group after injecting Dendranthema zawadskii var. latilobum (Maxim.) Kitam. extracts (DZ+IR group). The whole body of SD Rat was irradiated with gamma-ray 10Gy, and the administration of oral Dendranthema zawadskii var. latilobum (Maxim.) Kitam. Extract was 2 cc (71.56 mg/day/kg) once a day for 2 weeks. For this study, chages in blood cell levels, SOD assay, small intestine and uterus were observed. In the 21st white blood cell level, the DZ+IR group recovered to a normal level, and the IR group didn't. The IR group villus length was lower than other groups on Day 1. IR group was partially recovered, and DZ+IR group was recovered like the NC group on Day 21. In the case of the first-day endometrium, the IR group was thin and the boundary was cloudy, and the DZ+IR group was thicker and the boundary was clearer than the IR group. Day 21 IR group still did not recover, and DZ+IR group recovered like NC group. This is believed to have radiation protection effects in the blood cells and small intestine and uterus of the irradiated female SD Rat, and is expected to be useful for the study of natural radiation protection materials.

Radiation Protection Effect of Protaetia Brevitarsis Larvae Extracts on Blood and Prostate in Male Rats Irradiated with Co-60 Gamma-ray (흰점박이꽃무지 유충 추출물이 Co-60 감마선에 조사된 수컷 흰쥐의 혈구 및 전립선에 미치는 방사선 방호효과)

  • Jeong, Geun-Woo;Kim, Jang-Oh;Lee, Yoon-Ji;Kim, Hae-Suk;Jeon, Chan-Hee;Choi, Jae-Gyeong;Joo, Sung-Hyun;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.117-122
    • /
    • 2021
  • This study is desinged to examine for radiation protection effect of Protaetia Brevitarsis Larvae extracts on the blood and prostate of male rat as a natural radiation protection agent. 5 groups were classified using 90 male rat as experimental animals. Each group was clssified as normal control group (NC Group), the group administered protaetia brevitarsis larvae extracts (PBE Group), irradiated group (IR Group), irradiated group after administration of protaetia brevitarsis larvae extracts (PBE+IR Group), the group administered protaetia brevitarsis larvae extracts after irradiaton (IR+PBE Group). In IR Group, 7 Gy/h of Co-60 gamma ray was irradiated to SD rats. In PBE+IR Group, protaetia brevitarsis larvae extacts wewe injected at 200 mg/kg/day for 14 days before irradiation, In IR+PBE Group, protaetia brevitarsis larvae extract was injeted after irradiation. On the 1, 7 and 21 days after irradiation, the experimental animals were sacrificed to evaluate the changes in blood cell component, superoxide dismutase (SOD) activity, histopathological evaluation of the liver and prostate gland. As a result, the PBE+IR Group and IR+PBE Group showed a significantly recovery of white blood cell (p<0.01, p<0.01), platelet (p<0.01, p<0.01) than the IR Group. It was also confirmed that SOD activity of PBE+IR Group (p<0.01) and IR+PBE Group (p<0.01) was significantly increased than the IR Group. Also PBE+IR Group and IR+PBE Group showed less inflammatory reactions of cystoplasm in the prostate gland than the IR Group. In conclusion, the protaetia brevitarsis larvae have radioprotection effect against blood and prostate gland. It is expected to be useful for research of radiation protection agent.

Determination of counting efficiency considering the biodistribution of 131I activity in the whole-body counting measurement

  • MinSeok Park ;Jaeryong Yoo;Minho Kim ;Won Il Jang ;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.295-303
    • /
    • 2023
  • Whole-body counters are widely used to assess internal contamination after a nuclear accident. However, it is difficult to determine radioiodine activity due to limitations in conventional calibration phantoms. Inhaled or ingested radioiodine is heterogeneously distributed in the human body, necessitating time-dependent biodistribution for the assessment of the internal contamination caused by the radioiodine intake. This study aims at calculating counting efficiencies considering the biodistribution of 131I in whole-body counting measurement. Monte Carlo simulations with computational human phantoms were performed to calculate the whole-body counting efficiency for a realistic radioiodine distribution after its intake. The biodistributions of 131I for different age groups were computed based on biokinetic models and applied to age- and gender-specific computational phantoms to estimate counting efficiency. After calculating the whole-body counting efficiencies, the efficiency correction factors were derived as the ratio of the counting efficiencies obtained by considering a heterogeneous biodistribution of 131I over time to those obtained using the BOMAB phantom assuming a homogeneous distribution. Based on the correction factors, the internal contamination caused by 131I can be assessed using whole-body counters. These correction factors can minimize the influence of the biodistribution of 131I in whole-body counting measurement and improve the accuracy of internal dose assessment.

Radiation Protection Effect of Selenium on the Rat's Prostate (흰쥐의 전립선에 대한 셀레늄(Se)의 방사선 방호효과)

  • Choi, Hyung-Seok;Choi, Jun-Hyeok;Jung, Do-Young;Kim, Jang-Oh;Shin, Ji-Hye;Kim, Joo-Hee;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.317-322
    • /
    • 2017
  • High-tech medical equipment has increased the utilization of radiation in the medical field. As a result, research on radiation protection using natural materials has become an important social issue. Selenium is a natural substance that is highly expressed in prostate known that an essential role in prostate cells. Selenium was orally administered to Rat and irradiated with 10 Gy of radiation. Then, the prostate tissue w as used as a target organ for 1 day, 7 days and 21 days to investigate the radiation protection effect of selenium through changes of blood components, Superoxide Dismutase and histological changes. As a result, there was a significant protective effect of hematopoietic immune system(hemoglobin concentration, neutrophil, platelet) in the group irradiated with selenium(p<0.05). the observation of tissue changes selenium is an effective component to increase Superoxide Dismutase activity, and it was confirmed that it has an effect of inhibiting the expression of hypertrophy of prostate by irradiation. Therefore, it is considered that selenium can be utilized as a radioprotective agent by inducing prevention of prostate-related diseases.

Radiation Protection Effect of Mixed Extracts of Artemisia asiatica Nakai and Moringa oleifera Lam on Rats Uterus (흰쥐의 자궁에 대한 애엽-모링가 혼합추출물의 방사선 방호효과)

  • Lee, Yoon-Ji;Kim, Jang-Oh;Jeon, Chan-hee;Lee, Ji-Eun;Jeong, Geun-Woo;Jung, Do-Young;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.747-753
    • /
    • 2020
  • The purpose of this study was to examine the potential for the development of radioprotective agent in extracts manufactured by mixing Artemisia asiatica Nakai and Moringa oleifera Lam known as antioxidant food with the appropriate ratio. Their whole body were irradiated 7Gy radiation after oral administration of a mixed extract of Artemisia asiatica Nakai and Moringa oleifera Lam to SD Rat for two weeks. And 1 day, 7days, 21days later, changes in blood cell components, SOD activations and tissue changes in the uterus were observed.It was confirmed that the AM + IR group had a higher tendency to recover leukocyte (p<0.05) and platelet (p<0.05) levels than the IR group. It was also confirmed that SOD activity was increased and cell death was decreased in uterine tissue.Based on these results, the mixed extract of A and B is expected to be useful as a radiation protection agent capable of reducing blood cell and uterine damage caused by radiation exposure.

Application of the new ICRP iodine biokinetic model for internal dosimetry in case of thyroid blocking

  • Kwon, Tae-Eun;Chung, Yoonsun;Ha, Wi-Ho;Jin, Young Woo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1826-1833
    • /
    • 2020
  • Administration of stable iodine has been considered a best measure to protect the thyroid from internal irradiation by radioiodine intake, and its efficacy on thyroid protection has been quantitatively evaluated in several simulation studies on the basis of simple iodine biokinetic models (i.e., three-compartment model). However, the new iodine biokinetic model adopted by the International Commission on Radiological Protection interprets and expresses the thyroid blocking phenomenon differently. Therefore, in this study, the new model was analyzed in terms of thyroid blocking and implemented to reassess the protective effects and to produce dosimetric data. The biokinetic model calculation was performed using computation modules developed by authors, and the results were compared with those of experimental data and prior simulation studies. The new model predicted protective effects that were generally consistent with those of experimental data, except for those in the range of stable iodine administration -72 h before radioiodine exposure. Additionally, the dosimetric data calculated in this study demonstrates a critical limitation of the three-compartment model in predicting bioassay functions, and indicated that dose assessment 1 d after exposure would result in a similar dose estimate irrespective of the administration time of stable iodine.

Assessment of Counting Efficiency of a Whole Body Counter by Human Body Size and Standing Position Using Monte Carlo Method (몬테카를로 방법론을 이용한 측정 대상의 인체 크기와 측정 위치에 따른 전신계수기 계수효율 평가)

  • Pak, Min Jung;Yoo, Jae Ryong;Ha, Wi-Ho;Lee, Seung-Sook;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • For the case of radiation emergency, it is required to assess internal contamination of the public, including children as well as adults. The objective of the present study was to assess counting efficiency of a whole body counter by human body size and standing position of the measurement person. In this study, the FASTSCAN whole body counter used at National Radiation Emergency Medical Center of Korean Institute of Radiological and Medical Science was simulated by a radiation transport computer code. The simulation results of the counting efficiencies agreed well with measurements within the 2% of discrepancy for 4-year child and 5% for adults. The standing positions of the people were adjusted by body size to find the consistent trend of the counting efficiencies by human body size. Body size scaling factors of the whole body counter were derived to consider human body size and improve the measurement accuracy. The counting efficiency assessment methodology in this study can be successively used to improve the measurement accuracy when using a whole body counter for the case of radiation emergency.