• Title/Summary/Keyword: Radiation emergency

Search Result 223, Processing Time 0.029 seconds

Analysis of dose reduction of surrounding patients in Portable X-ray (Portable X-ray 검사 시 주변 환자 피폭선량 감소 방안 연구)

  • Choe, Deayeon;Ko, Seongjin;Kang, Sesik;Kim, Changsoo;Kim, Junghoon;Kim, Donghyun;Choe, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Nowadays, the medical system towards patients changes into the medical services. As the human rights are improved and the capitalism is enlarged, the rights and needs of patients are gradually increasing. Also, based on this change, several systems in hospitals are revised according to the convenience and needs of patients. Thus, the cases of mobile portable among examinations are getting augmented. Because the number of mobile portable examinations in patient's room, intensive care unit, operating room and recovery room increases, neighboring patients are unnecessarily exposed to radiation so that the examination is legally regulated. Hospitals have to specify that "In case that the examination is taken out of the operating room, emergency room or intensive care units, the portable medical X-ray protective blocks should be set" in accordance with the standards of radiation protective facility in diagnostic radiological system. Some keep this regulation well, but mostly they do not keep. In this study, we shielded around the Collimator where the radiation is detected and then checked the change of dose regarding that of angles in portable tube and collimator before and after shielding. Moreover, we tried to figure out the effects of shielding on dose according to the distance change between patients' beds. As a result, the neighboring areas around the collimator are affected by the shielding. After shielding, the radiation is blocked 20% more than doing nothing. When doing the portable examination, the exposure doses are increased $0^{\circ}C$, $90^{\circ}C$ and $45^{\circ}C$ in order. At the time when the angle is set, the change of doses around the collimator decline after shielding. In addition, the exposure doses related to the distance of beds are less at 1m than 0.5m. In consideration of the shielding effects, putting the beds as far as possible is the best way to block the radiation, which is close to 100%. Next thing is shielding the collimator and its effect is about 20%, and it is more or less 10% by controlling the angles. When taking the portable examination, it is better to keep the patients and guardians far enough away to reduce the exposure doses. However, in case that the bed is fixed and the patient cannot move, it is suggested to shield around the collimator. Furthermore, $90^{\circ}C$ of collimator and tube is recommended. If it is not possible, the examination should be taken at $0^{\circ}C$ and $45^{\circ}C$ is better to be disallowed. The radiation-related workers should be aware of above results, and apply them to themselves in practice. Also, it is recommended to carry out researches and try hard to figure out the ways of reducing the exposure doses and shielding the radiation effectively.

A Study on the Determination of Radionuclide Concentrations in Animal Feedstuffs for Use Following a Nuclear Emergency (원자력 비상시 가축의 사료로 이용을 위한 사료내 방사성 핵종농도 결정에 대한 연구)

  • Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Choi, Young-Gil;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.87-91
    • /
    • 2001
  • The optimized derived intervention levels for animal products were evaluated based on cost-benefit analysis. From these results, the radionuclide concentrations in animal feedstuffs for use were derived. It was shown that radionuclide concentrations in animal feedstuffs for use depend strongly on animal products, radionuclides and feeding period (period from the starting time to be led with contaminated feedstuffs to production time of animal products). In case of feedstuffs contaminated with long-lived radionuclides ($^{l37}Cs,\;^{90}Sr$), the feedstuffs with lower contamination should be supplied to animals with increase of feeding period due to the bioaccumulation of radionuclides. While, in case of feedstuffs contaminated with short-lived radionuclides ($^{131}I$), the feeding of higher contaminated feedstuffs was possible with increase of feeding period due to radionuclide decay. It was shown that $^{137}Cs$ concentration in animal feedstuffs lot use was lower than $^{90}Sr$ concentration. It is primarily, due to the higher feed-animal product transfer factor of $^{137}Cs$.

  • PDF

Application of Multi-Attribute Utility Analysis for the Decision Support of Countermeasures in Early Phase of a Nuclear Emergency (원자력 사고시 초기 비상대응 결정지원을 위한 다속성 효용 분석법의 적용)

  • Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Jeong, Hyo-Joon;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • A multi-attribute utility analysis was investigated as a tool for the decision support of countermeasures in early phase of a nuclear accident. The utility function of attributes was assumed to be the second order polynomial expressions, and the weighting constant of attributes was determined using a swing weighting method. Because the main objective of this study focuses on the applicability of a multi-attribute utility analysis as a tool for the decision support of countermeasures in early phase of a nuclear accident, less quantifiable attributes were not included due to lack of information. In postulated accidental scenarios for the application of the designed methodology, the variation of the numerical values of total utility for the considered actions, e.g. sheltering, evacuation and no action, was investigated according to the variation of attributes. As a result, it was shown that the numerical values of total utility for the actions are distinctly different depending on the exposure dose and monetary value of dose. As increasing in both attributes, the rank of the numerical values of total utility increased for evacuation, which is more extreme action than for sheltering, while that of no action decreased. As expected probability of high dose is higher, the break-even values for the monetary value of dose, which are the monetary value of dose when the ranking of actions is changed, were lower. In audition, as aversion psychology for dose is higher, the break-even values for dose were lower.

Improvement of a Dynamic Food Chain Model Considering the Influence of Radioactive Contamination of Foods by Rainfall During a Nuclear Emergency (원자력 사고 중 강우에 의한 음식물 오염영향을 고려한 역동학적 섭식경로모델 개선)

  • Hwang, Won-Tae;Kim, Eun-Han;Han, Moon-Hec;Choi, Yong-Ho;Lee, Han-Soo;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • For the consideration of the influence on radioactive contamination of foods due to rain during the release period of radionuclides in a nuclear accident, the previous dynamic food chain model was improved. Wet interception coefficients for the agricultural plants were derived as a function of radionuclide and rainfall amount, and mathematical formula of the model was also re-established. In the results for the same time-integrated radioactive concentrations on the ground, radioactive contamination of foods decreased greatly by rainfall, and it decreased dramatically according to increasing rainfall amount. It means that predictive contamination in foods using the previous dynamic food chain model, in which dry interception to the agricultural plants is only considered, can be overestimated. Among radionuclides considering in this study ($^{137}Cs,\;^{90}Sr,\;^{131}I$), influence of rainfall for food contamination was the most sensitive to $^{131}I$, and the least sensitive to $^{90}Sr$.

DEVELOPMENTAL DENTAL COMPLICATIONS AFTER ANTICANCER THERAPY IN CHILDREN (항암 치료를 받은 아동의 치아 발육 장애)

  • Kim, Min-Jeong;Lee, Hyung-Sook;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.4
    • /
    • pp.607-612
    • /
    • 2009
  • The malignant tumor in childhood is one of the main causes of children s death due to disease. The traditional treatment for the malignancy is known for the radiation therapy and the chemical therapy or both. However, the treatments tend to induce intraoral complications. Different from adults, almost all children on cancer therapy are expected to have dental complications, because their permanent teeth are on the developmental stage. The degree of dental complication depends on the patient's age, type of chemical and other factors-radiation dose and frequency. In this report, 3 children who had experienced the anti-cancer therapy on their age between 1 and 4 years were selected and dental complications were examined. The children have chance for the various oral complications including the developmental problems such as agenesis, microdontia and hypoplasia of the teeth. Therefore, it's important to understand the side-effects of anticancer therapy during the permanent teeth had been developmental stage in young patients. Also, oral health care specialists, including pediatric and hospital dentist can support the oncology team by providing basic oral care, implementing oral care protocols, delivering emergency dental treatment undergoing anticancer treatment.

  • PDF

Assessment of Radionuclide Deposition on Korean Urban Residential Area

  • Lee, Joeun;Han, Moon Hee;Kim, Eun Han;Lee, Cheol Woo;Jeong, Hae Sun
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • Background: An important lesson learned from the Fukushima accident is that the transition to the mid- and long-term phases from the emergency-response phase requires less than a year, which is not very long. It is necessary to know how much radioactive material has been deposited in an urban area to establish mid- and long-term countermeasures after a radioactive accident. Therefore, an urban deposition model that can indicate the site-specific characteristics must be developed. Materials and Methods: In this study, the generalized urban deposition velocity and the subsequent variation in radionuclide contamination were estimated based on the characteristics of the Korean urban environment. Furthermore, the application of the obtained generalized deposition velocity in a hypothetical scenario was investigated. Results and Discussion: The generalized deposition velocities of 137Cs, 106Ru, and 131I for each residence type were obtained using three-dimensional (3D) modeling. For all residence types, the deposition velocities of 131I are greater than those of 106Ru and 137Cs. In addition, we calculated the generalized deposition velocities for each residential types. Iodine was the most deposited nuclide during initial deposition. However, the concentration of iodine in urban environment drastically decreases owing to its relatively shorter half-life than 106Ru and 137Cs. Furthermore, the amount of radioactive material deposited in nonresidential areas, especially in parks and schools, is more than that deposited in residential areas. Conclusion: In this study, the generalized urban deposition velocities and the subsequent deposition changes were estimated for the Korean urban environment. The 3D modeling was performed for each type of urban residential area, and the average deposition velocity was obtained and applied to a hypothetical accident. Based on the estimated deposition velocities, the decision-making systems can be improved for responding to radioactive contamination in urban areas. Furthermore, this study can be useful to predict the radiological dose in case of large-scale urban contamination and can support decision-making for long-term measurement after nuclear accident.

A Study on the Problems and Improvement of the Safety Management Law of Nuclear Facilities -Focused on Safety Management of Aquatic Products- (원자력시설 안전관리 법제의 문제점과 개선방안 연구 -수산물의 안전관리를 중심으로-)

  • Lee, Woo-Do
    • The Journal of Fisheries Business Administration
    • /
    • v.50 no.2
    • /
    • pp.23-40
    • /
    • 2019
  • The main purpose of this study is to analyze and examine the problems of the law systems of the safety and maintenance of nuclear facilities and to propose the improvements with respect to the related problems especialy focused on safety management of aquatic products. Therefore, the results of the paper would be helpful to build an effective management law system of safety and maintenance of nuclear facilities and fisheries products. The research methods are longitudinal and horizontal studies. This study compares domestic policies with foreign policies of nuclear plants and aquatic products. Using the above methods, examining the current system of nuclear-related laws and regulations, we have found that there exist 13 Acts including "Nuclear Safety Act", etc. Safety laws related on nuclear facilities have seven Acts including "Nuclear Safety Act", "the Act on Physical Protection and Radiological Emergency", "Radioactive waste control Act", "Act on Protective Action Guidelines against Radiation in the Natural Environment", "Special Act on Assistance to the locations of facilities for disposal low and intermediate level radioactive waste", "Korea Institute of Nuclear Safety Act". "Act on Establishment and Operation of the Nuclear Safety and Security Commission". The seven laws are composed of 119 legislations. They have 112 lower statute of eight Presidential Decrees, six Primeministrial Decrees and Ministrial Decrees, 92 administrative rules (orders), 6 legislations of local self-government aself-governing body. The concluded proposals of this paper are as follows. Firstly, we propose that the relationship between the special law and general law should be re-established. Secondly, the terms with respect to law system of safety and maintenance of nuclear plants should be redefined and specified. Thirdly, it is advisable to re-examine and re-establish the Law System for Safety and Maintenance of Nuclear Facilities. and environmental rights like the French Nuclear Safety Legislation. Lastly, inadequate legislation on the aquatic pollution damage should be re-established. It is necessary to ensure sufficient transparency as well as environmental considerations in the policy decisions of the Korean government and legislation of the National Assembly. It is necessary to further study the possibilities of accepting the implications of the French legal system as a legal system in Korea. In conclusion, the safety management of nuclear facilities is not only focused on the secondary industry and the tertiary industry centering on power generation and supply, but also on the primary industry, which is the food of the people. It is necessary to prevent damage to be foreseen. Therefore, it is judged that there should be no harm to the people caused by contaminated marine products even if the "Food Safety Law for Prevention of Radiation Pollution Damage" is enacted.

Development of a Quantitative Resilience Model for Severe Accident Response Organizations of Nuclear Power Plants: Application of AHP Method (원자력발전소 중대사고 대응 조직에 대한 레질리언스 정량적 모델 개발: AHP 방법 적용)

  • Park, Jooyoung;Kim, Ji-tae;Lee, Sungheon;Kim, Jonghyun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.116-129
    • /
    • 2020
  • Resilience is defined as the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations or functions with the related systems under both expected and unexpected conditions. Resilience engineering is a relatively new paradigm for safety management that focuses on how to cope with complexity under pressure or disturbance to achieve successful functioning. This study aims to develop a quantitative resilience model for severe accident response organizations of nuclear power plants using the Analytic Hierarchy Process (AHP) method. First, we investigated severe accident response organizations based on a radiation emergency plan in the Korean case and developed a qualitative resilience model for the organizations with resilience-influencing factors, which have been identified in the author's previous studies. Then, a quantitative model for entire severe accident response organizations was developed by using the Analytic Hierarchy Process (AHP) method with a tool for System Dynamics. For applying the AHP method, several experts who are working on implementing, regulating or researching the severe accident response participated in collecting their expertise on the relative importance between all the possible relations in the model. Finally, a sensitivity analysis was carried out to discuss which factors have the most influenceable on resilience.

Modified Piezoelectric Ceramics for Portable Ultrasonic Medical Probe Application (휴대용 의료 초음파 프로브 적용을 위한 압전체 제조 및 특성)

  • Kang, Dong Heon;Chae, Mi Na;Hong, Se Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.483-488
    • /
    • 2016
  • Ultrasound imaging by using piezoelectric materials, such as lead zirconium titanate (PZT) has been one of the most preferred modes of imaging in the medical field due to its simple, low cost and non-ionizing radiation in comparison to other imaging techniques. Recently, the market demand for portable ultrasound is becoming larger with applications in developing countries, disaster area, military, and emergency purposes. However, most of ultrasound probes used is bulky and high power consumable, so unsuitable for such applications. In this study, the 3 layered ceramic specimen consisted of 128 pitches of $420{\mu}m$ in width and $450{\mu}m$ in thickness were prepared by using the Ti-rich PZT compositions co-fired at $1,050^{\circ}C$. Their electrical and ultrasound pulse-echo properties were investigated and compared to the single layer specimen. The 3 layered ultrasound probe showed 1.584 V of Vp-p, which is 3.2 times higher than single layered one, implying that it would allow effectively such a portable ultrasound probe system. The result were discussed in terms of higher capacitance, lower impedance and higher dielectric coefficient of the 3 layered ultrasound probe.

Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

  • Cheng, Bo;Kim, Young-Jin;Chou, Peter
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.16-25
    • /
    • 2016
  • In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconiumalloy fuel claddingmaterials are rapidlyheateddue to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF) design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI) is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in $1,200-1,500^{\circ}C$ steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstratedcorrosionresistance.Asthese composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Moalloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are discussed in this document. In addition to assisting plants in meeting Light Water Reactor (LWR) challenges, accident-tolerant Mo-based cladding technologies are expected to be applicable for use in high-temperature helium and molten salt reactor designs, as well as nonnuclear high temperature applications.