• Title/Summary/Keyword: Radiation efficiency

Search Result 1,259, Processing Time 0.028 seconds

Development of a Novel MPPT Algorithm of PV System Considering Radiation Variation

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.56-64
    • /
    • 2012
  • This paper proposes a novel maximum power point tracking (MPPT) control algorithm considering radiation to improve efficiency of PV system. The proposed algorithm is composed perturb and observe (PO) method and constant voltage (CV) method. PO method is simple to realize and CV method is possible to tracking MPP with low radiation. Response characteristics of proposed algorithm are compared to conventional MPPT algorithm such as PO method, IC method and CV method with radiation variation. This paper proves the validity of proposed algorithm through the analysis results.

Investigation of 3D Printed Electrically Small Folded Spherical Meander Wire Antenna

  • Kong, Myeongjun;Shin, Geonyeong;Lee, Su-Hyeon;Yoon, Ick-Jae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.228-232
    • /
    • 2017
  • The radiation properties and fabrication precautions of a 3D printed, electrically small folded spherical meander wire monopole antenna are investigated. The antenna is self-resonant and shows sufficiently high radiation efficiency at an electrical size ka of 0.4, with the radiation quality factor Q approaching the lower physical bound. In antenna fabrication, the possible structural deformation due to gravity is examined before the antenna frame is 3D-printed. The required conductivity is achieved by multiple manual paintings of a silver paste. The radiation efficiency and pattern show very good agreement with the computed expectations, whereas the resonant frequency deviates by 11.8%. The method to minimize such a fabrication error when using 3D printing technology for wire antennas is discussed.

Radon Removal Efficiency of Activated Carbon Filter from Coconut (코코넛 기반 활성탄 필터의 라돈 제거 효율)

  • Yun-Jin Ahn;Gi-Sub Kim;Tae-Hwan Kim;Sang-Rok Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences plans to produce 225Ac, a therapeutic radio-pharmaceutical for precision oncology, such as prostate cancer. Radon, a radioactive gas, is generated by radium, the target material for producing 225Ac. The radon concentration is expected to be about 2000 Bq·m-3. High-concentration radon-generating facilities must meet radioactive isotope emission standards by lowering the radon concentration. However, most existing studies concerning radon removal using activated carbon filters measured radon levels at concentrations lower than 1000 Bq·m-3. This study measured 222Rn removal of coconut-based activated carbon filter under a high radon concentration of about 2000 Bq·m-3. The 222Rn removal efficiency of activated carbon impregnated with triethylenediamine was also measured. As a result, the 222Rn removal amount of the activated carbon filter showed sufficient removal efficiency in a 222Rn concentration environment of about 2000 Bq·m-3. In addition, despite an expectation of low radon reduction efficiency of Triethylenediamine-impregnated activated carbon, it was difficult to confirm a significant difference in the results. Therefore, it is considered that activated carbon can be used as a radioisotope exhaust filter regardless of whether or not Triethylenediamine is impregnated. The results of this study are expected to be used as primary data when building an air purification system for radiation safety management in facilities with radon concentrations of about 2000 Bq·m-3.

Development for Improvement Methodology of Radiation Shielding Evaluation Efficiency about PWR SNF Interim Storage Facility (PWR 사용후핵연료 중간저장시설의 몬테칼로 차폐해석 방법에 대한 계산효율성 개선방안 연구)

  • Kim, Taeman;Seo, Myungwhan;Cho, Chunhyung;Cha, Gilyong;Kim, Soonyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.92-100
    • /
    • 2015
  • For the purpose of improving the efficiency of the radiation impact assessment of dry interim storage facilities for the spent nuclear fuel of pressurized water reactors (PWRs), radiation impact assessment was performed after the application of sensitivity assessment according to the radiation source term designation method, development of a 2-step calculation technique, and cooling time credit. The present study successively designated radiation source terms in accordance with the cask arrangement order in the shielding building, assessed sensitivity, which affects direct dose, and confirmed that the radiation dosage of the external walls of the shielding building was dominantly affected by the two columns closest to the internal walls. In addition, in the case in which shielding buildings were introduced into storage facilities, the present study established and assessed the 2-step calculation technique, which can reduce the immense computational analysis time. Consequently, results similar to those from existing calculations were derived in approximately half the analysis time. Finally, when radiation source terms were established by adding the storage period of the storage casks successively stored in the storage facilities and the cooling period of the spent nuclear fuel, the radiation dose of the external walls of the buildings was confirmed to be approximately 40% lower than the calculated values; the cooling period was established as being identical. The present study was conducted to improve the efficiency of the Monte Carlo shielding analysis method for radiation impact assessment of interim storage facilities. If reliability is improved through the assessment of more diverse cases, the results of the present study can be used for the design of storage facilities and the establishment of site boundary standards.

The Regulatory Effects of Radiation and Histone Deacetylase Inhibitor on Liver Cancer Cell Cycle

  • Lee, Sang Ho;Han, Chang Hee;Kang, Su Man;Park, Cheol Woo
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.74-77
    • /
    • 2012
  • Radiation has been an effective tool for treating cancer for a long time. Radiation therapy induces DNA damage within cancer cells and destroys their ability to reproduce. Radiation therapy is often combined with other treatments, like surgery and chemotherapy. Here, we describe the effects of radiation and histone deacetylase inhibitor, Trichostain A, on cell cycle regulation in hepatoma cells. The combinatorial treatment of radiation and Trichostain A induced cell cycle arrest and thereby increasing the hepatoma cell death. Furthermore, the regulatory effects of radiation and Trichostatin A on cell cycle applied in cell type specifically. These results suggest that the treatment of radiation and Trichostatin A may play a central role in hepatoma cell death and might be a good remedy to improve the efficiency of radiation therapy.

Modeling Analysis for Thermal Performance of Solar Flat Plate Collector System Through a Year (평판형 태양열 집열기의 연중 열적 성능의 모델링 해석)

  • Kim, Gew Deok;Park, Bae Duck;Kim, Kyoung Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The monthly-average meteorological data, in particular, the monthly average daily terrestrial horizontal insolation are required for designing solar thermal energy systems. In this paper, the dynamic thermal performance of a flat plate solar collector system is numerically investigated through a year from the monthly average insolation data in Seoul. For a specified data set of solar collector system, the dynamic behaviors of total solar radiation on the tilted collector surfaces, heat loss from the collector system, useful energy and collector efficiency are analyzed from January to December by a mathematical simulation model. In addition, the monthly average daily total solar radiation, useful energy, and daily collector efficiencies through a year are estimated. The simulated results show that the average total radiation is highest in March and the useful energy is highest in October, while the total radiation and the collector efficiency are lowest in July.

Comparison of Radiation Characteristics and Radiant Quantities per unit Electrical Power between High Luminance Light Emitting Diode and Fishing Lamp light Source (고휘도 발광다이오우드와 집어등 광원의 방사특성 및 단위 전력당 방사량 비교)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.511-517
    • /
    • 2008
  • The radiation characteristics and economic efficiency of high - luminance light - emitting diodes (LEDs), a metal halide lamp, and a halogen lamp were studied to evaluate their potential as an energy-saving light source for fishing lamps. The wavelengths at which irradiance was maximum were 709, 613, 473, 501, 525, 465, 578, and 973 nm for red, orange, blue, peacock blue, green, and white LEDs, the metal halide lamp, and the halogen lamp, respectively. If the irradiance characteristics at 300-1,100 nm wavelengths are set as 100%, the irradiance rates at 381-780 nm were 99-78%, 82%, and 24% for the LEDs, metal halide lamp, and halogen lamp, respectively. The economic efficiency was superior in the order metal halide lamp, halogen lamp, peacock blue LED, and blue LED at 381-780 nm and metal halide lamp, peacock blue LED, blue LED, and halogen lamp at 480-520 nm. Based on the radiation characteristics and economic efficiency evaluated at 480-520 nm, the blue and peacock blue LED light sources can be used as energy-saving light sources for fishing lamps.

Study on Scintillator Polishing Technology for Increasing the Detection Efficiency of Radiation Detectors Using Plastic Scintillators (플라스틱 섬광체를 이용한 방사선 검출기의 검출 효율을 높이기 위한 섬광체 연마 기술 연구)

  • Kim, Jeong-Ho;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.456-462
    • /
    • 2014
  • Scintillators were polished in four steps using polishing paper, to reduce the optical loss occurring at their cross section when radiation detectors are fabricated with plastic scintillators. We studied the correlation between the polishing steps and detection efficiency and assessed the detection characteristics that are dependent in the polishing steps. Our results showed that the detection efficiency increased by approximately 7.75 times for a detector that used a scintillator polished in four steps, compared to a detector that used an depolished scintillator. For detectors fabricated using scintillators polished in different steps, better detection characteristics were obtained in terms of the activity, distance, and location of radiation, compared to detectors fabricated with an depolished scintillator.

The Study of Improvement of the Void Slab Applying the Impedance Method (임피던스법을 이용한 보이드 슬라브의 개선방안에 관한 연구)

  • 오재응;김영식
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.276-284
    • /
    • 2001
  • In apartment buildings, floor-impact sound has been regarded as the major source that causes complaints from residents. It is mainly due to the use of light-weight structures and the lack of researches in terms of floor-impact sound. The purposes of this study are analyzing the characteristics of vibration response and sound radiation of 12type void slabs in the improvements void slab by impedance method and finding the fittest improvements void slab on the 12type void slab. The main results of this study are summarized as below: (1) In the $\frac{1}{3}$ octave band level of sound radiation, $\frac{1}{3}$ octave band levels, measured from four-divided improvement void slab(No.8) and eight-divided improvement void slab(No.12), are 10~25 dB lower than that of standard void slab(No.1) in the 1250 Hz. Especially, eight-divided improvement void slab(No.12) is the best void slab in terms of radiation efficiency of sound level. (2) In the correlation relation of acceleration and sound radiation, standard void slab(No.1), four-divided improvement void slab(No.8), SK standard four-hole void slab(No.10), and eight-divided improvement void slab(No.12) are positive correlation relation.

  • PDF

Mixed Reality Based Radiation Safety Education Simulator Platform Development : Focused on Medical Field (혼합현실 기반 방사선 안전교육 시뮬레이터 플랫폼 개발 : 의료분야 중심으로)

  • Park, Hyong-Hu;Shim, Jae-Goo;Kwon, Soon-Mu
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • In this study, safety education contents for medical radiation workers were produced based on Mixed Reality(MR). Currently, safety training for radiation workers is based on theory. This is insufficient in terms of worker satisfaction and efficiency. To address this, we created ICT(Information and Communication Technologies)-based MR radiation worker safety education content. The expected effect of Mixed Reality worker safety education content is that education is possible without space and time constraints, realistic education is possible without on-site training, and interaction between images is possible through reality-based 3D images, enabling self-directed learning Is that. In addition, learning in a virtual space expressed through HMD(Head Mounted Display) is expected to make education more enjoyable and increase concentration, thereby increasing the efficiency of education. A quantitative evaluation was conducted by an accredited institution and a qualitative evaluation was performed on users, which received excellent evaluation. The MR safety education conducted in this study is expected to be of great help to the education of medical radiation workers, and is expected to develop into a new educational paradigm as online education in accordance with Corona 19 progresses.