• 제목/요약/키워드: Radiation distribution image

검색결과 176건 처리시간 0.03초

방사선 분포 모니터링 시스템 (Radiation level distribution monitoring system)

  • 최영수;박순용;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.828-831
    • /
    • 1996
  • Radiation monitoring system is needed at nuclear power plant and nuclear facility. Manual survey techniques are commonly used, but they are time consuming and somewhat inaccurate. Automatic radiation surveys are very important because it provides significant savings in men-rem and wages. Unmanned, remote automatic radiation measurement system should be small and light-weighted in order to mount on robotic system. The system we have developed consists of detection parts, signal processing part, interface, and software part. Position information is provided by using of a collimator. The measurement process is achieved by the scanning of detector and image processing techniques are used to display radiation levels. We designed collimators, detectors, signal processing circuit, and constructed prototype system. The goal of this system is the mapping of camera image and radiation level distribution.

  • PDF

ANALYSIS BY SYNTHESIS FOR ESTIMATION OF DOSE CALCULATION WITH gMOCREN AND GEANT4 IN MEDICAL IMAGE

  • Lee, Jeong-Ok;Kang, Jeong-Ku;Kim, Jhin-Kee;Kim, Bu-Gil;Jeong, Dong-Hyeok
    • Journal of Radiation Protection and Research
    • /
    • 제37권3호
    • /
    • pp.146-148
    • /
    • 2012
  • The use of GEANT4 simulation toolkit has increased in the radiation medical field for the design of treatment system and the calibration or validation of treatment plans. Moreover, it is used especially on calculating dose simulation using medical data for radiation therapy. However, using internal visualization tool of GEANT4 detector constructions on expressing dose result has deficiencies because it cannot display isodose line. No one has attempted to use this code to a real patient's data. Therefore, to complement this problem, using the result of gMocren that is a three-dimensional volume-visualizing tool, we tried to display a simulated dose distribution and isodose line on medical image. In addition, we have compared cross-validation on the result of gMocren and GEANT4 simulation with commercial radiation treatment planning system. We have extracted the analyzed data of dose distribution, using real patient's medical image data with a program based on Monte Carlo simulation and visualization tool for radiation isodose mapping.

IBM Personal Computer를 이용한 3차원적 뇌정위 방사선 수술계획 시스템의 개발 (Development of 3-D Radiosurgery Planning System Using IBM Personal Computer)

  • 서태석;서덕영;박찬일;하성환;강위생;박승훈;윤세철
    • Radiation Oncology Journal
    • /
    • 제11권1호
    • /
    • pp.167-174
    • /
    • 1993
  • Recently, stereotactic radiosurgery plan is required with the information of 3-D image and dose distribution. A project has been doing if developing LINAC based stereotactic radiosurgery since April 1991. The purpose of this research is to develop 3-D radiosurgery planning system using personal computer. The procedure of this research is based on two steps. The first step is to develop 3-D localization system, which input the image information of the patient, coordinate transformation, the position and shape of target, and patient contour into computer system using CT image and stereotactic frame. The second step is to develop 3-D dose planning system, which compute dose distribution on image plane, display on high resolution monitor both isodose distribution and patient image simultaneously and develop menu-driven planning system. This prototype of radiosurgery planning system was applied recently for several clinical cases. It was shown that our planning system is fast, accurate and efficient while making it possible to handle various kinds of image modalities such as angiography, CT and MRI. It makes it possible to develop general 3-D planning system using beam's eye view or CT simulation in radiation therapy in future.

  • PDF

영상처리기반 감마선 분포탐지 효율 개선에 관한 연구 (The Study for Improved Efficiency of the Detection of Radiation Sources Distribution using Image Processing)

  • 황영관;이남호;김종열;정상훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.780-781
    • /
    • 2016
  • 스테레오 감마선 공간 탐지장치는 감마선원을 탐지하고 그 결과를 바탕으로 2차원 영상분포를 측정한 후, 스테레오 카메라 기법을 적용하여 3차원 공간상에서 장치로부터 선원까지의 거리를 측정할 수 있도록 구현되었다. 본 논문에서는 영상처리 알고리즘을 통해 감마선 공간 탐지를 위한 스캔시간을 줄이고, 방사광 및 가시광 영상을 중첩한 후 스테레오 보정을 통해 3차원 가시화를 통한 감마선 분포 탐지 효율 개선을 위한 연구를 수행하였다. 탐지시험 결과 고속 탐지를 위한 알고리즘을 적용한다면 단일선원을 탐지할 때 약 30%이상의 탐지효율 개선하였으며, 3D 모니터를 통한 3차원 시각화 영상을 통해 공간상의 선원에 대한 분포를 확인하였다.

  • PDF

Analysis of Radiation Exposure Dose according to Location Change during Radiation Irradiation

  • Chang-Ho Cho;Jeong-Lae Kim
    • International Journal of Advanced Culture Technology
    • /
    • 제12권2호
    • /
    • pp.368-374
    • /
    • 2024
  • During an X-ray examination, the beam of radiation is dispersed in many directions. We believe that managing radiation dose is about providing transparency to users and patients in the accurate investigation and analysis of radiation dose. The purpose of measuring the radiation dose as a function of location is to ensure that medical personnel using the equipment or participating in the operating room are minimally harmed by the different radiation doses depending on their location. Four mobile diagnostic X-ray units were used to analyze the radiation dose depending on the spatial location. The image intensifier and the flat panel detector type that receives the image analyzed the dose by angle to measure the distribution of the exposure dose by location. The radiation equipment used was composed of four units, and measuring devices were installed according to the location. The X-ray (C-arm) was measured by varying the position from 0 to 360 degrees, and the highest dose was measured at the center position based on the abdominal position, and the highest dose was measured at the 90° position for the head position when using the image intensifier equipment. The operator or medical staff can see that the radiation dose varies depending on the position of the diagnostic radiation generator. In the image intensifier and flat panel detector type that accepts images, the dose by angle was analyzed for the distribution of exposed dose by position, and the measurement method should be changed according to the provision of dose information that is different from the dose output from the equipment according to the position.

방사선 영상 매핑 장치 (Radiation image mapping system)

  • 최영수;박순용;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1884-1887
    • /
    • 1997
  • The increasing concern over radiation exposure in the nuclear industry has fostered agrressive efforts to reduce the levels of radiation exposure. One area of the effot to reduce the radiation exposure is the development of a remote radiation monitoring system. Remote radiation monitoring can serve many benificaial functions reduce exposure to radiation by plant personnel, impruve the quality of the data that is collected and recognize the radiation environment easily. Radiation mapping system gives a good information that represents radiation level distribution. The system we have developed consists of a data acquistion parts, mobile robot and remote control parts. Data acquisition parts consist of radiation detection module and vision acquistion module which collect radiation data, visiion data and distance information. In remote control parts, the acquision data are processed and displayed. We have constructed radiation mapping image by overlaying the vision and radiation data. The radiation mapping techniques for displaying the results of the survey in an easily comprehendable form will facilitate a better understanding of the radiation environment in the facility. This system can reduce workers radiation exposure and aid to help work plan, so it has significant benifits in cost and safety.

  • PDF

방사선 오염분포 영상화를 위한 방사선 센서의 탐지 범위 개선에 관한 연구 (Detection Range Improvement of Radiation Sensor for Radiation Contamination Distribution Imaging)

  • 송근영;황영관;이남호;나준희
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1535-1541
    • /
    • 2019
  • 방사선 사고 지역 및 제염이 필요한 지역에서의 안전하고 신속한 제염작업을 진행하기 위해서는 방사선 오염원에 대한 다양한 정보 획득이 필요하다. 특히 방사선원의 정확한 위치와 분포 정보의 파악은 신속한 후속 조치 및 오염원 제거를 위해 반드시 필요하며, 작업자의 방사선 피폭을 최소화할 수 있다. 방사선원의 위치와 분포 정보를 획득하기 위해서는 방사선 분포 탐지 장치를 사용한다. 방사선 분포 탐지 장치의 경우 일반적으로 탐지 센서 부가 단일 센서로 구성되며, 단일 센서의 물리적 한계로 인해 탐지 범위가 제한되는 문제점이 있다. 본 논문에서는 방사선 오염 분포 영상화 장치에 사용되는 단일 센서의 탐지 감도 제어를 위하여 보정 검출기를 적용하였으며, 이를 통해 제한적이었던 선량률 탐지 범위를 향상하였다. 또한 감마선 조사 시험을 통해 방사선 분포 탐지 범위의 개선을 확인하였다.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

Development of PC-based Radiation Therapy Planning System

  • Suh, Tae-Suk;P task group, R-T
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.121-122
    • /
    • 2002
  • The main principle of radiation therapy is to deliver optimum dose to tumor to increase tumor cure probability while minimizing dose to critical normal structure to reduce complications. RTP system is required for proper dose plan in radiation therapy treatment. The main goal of this research is to develop dose model for photon, electron, and brachytherapy, and to display dose distribution on patient images with optimum process. The main items developed in this research includes: (l) user requirements and quality control; analysis of user requirement in RTP, networking between RTP and relevant equipment, quality control using phantom for clinical application (2) dose model in RTP; photon, electron, brachytherapy, modifying dose model (3) image processing and 3D visualization; 2D image processing, auto contouring, image reconstruction, 3D visualization (4) object modeling and graphic user interface; development of total software structure, step-by-step planning procedure, window design and user-interface. Our final product show strong capability for routine and advance RTP planning.

  • PDF

30W급 LED 투광등 히트싱크 높이변화에 따른 온도분포에 관한 실험적 연구 (An Experimental Study on the Temperature Distribution according to the Heat Sink Height of 30W LED Floodlight)

  • 김대언;정한식;정효민;이중섭
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.150-156
    • /
    • 2017
  • This study tests the characteristics of heat radiation by applying the pin-height variables to 30-W LED floodlights. The angle of the heat sink enables us to identify the characteristics of the heat radiation based on the temperature distribution. The results of the study are as follows. When the heat sinks are set towards the ground, the heat transfer decreases in speed only to expands the temperature distribution, which adversely affects the characteristics of heat radiation and expands the temperature distribution of PCB with the LED chip. We verify that the characteristics of heat radiation are adversely affected when the height of the cooling pin decreases and the heat radiation area decreases, which impedes the heat transfer and increases the temperature distribution on the heat sink.