• Title/Summary/Keyword: Radiation biology

Search Result 446, Processing Time 0.031 seconds

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Sunflower Seedlings

  • Kim, Tae-Yun;Hong, Jung-Hee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.455-457
    • /
    • 2006
  • The effects of UV-B irradiation on the growth and photosynthetic activity were investigated in seedlings of sunflower(Helianthus annuus L.). The first leaves irradiated with UV-B were retarded in growth but simultaneously acquired a remarkably decreased chlorophyll fluorescence ratio compared with the non-irradiated leaves. The Fv/Fm ratio decreased by 13 % compared to the control after 2 d, and was kept to be lower than the control level until 5 d. From the results it is suggested that UV-B radiation may induce reduced biomass production and decrease in photosynthetic rate in sunflower plants.

  • PDF

Physiological and Ecological Studies of the Vegetation on Ore Deposits (금속광물상에 나타나는 식물에 관한 생리생태학적 연구 3. 괴산 우라늄광지대 식물의 방사선생태학적 징상)

  • Chang, Nam Kee;Chang Soo Mok
    • The Korean Journal of Ecology
    • /
    • v.5 no.4
    • /
    • pp.137-142
    • /
    • 1982
  • From 1975 to 1981, the survey was carried out to find out radioecological effects of uranium ore deposits on natural vegetation in Koisan, Korea. The symptoms of spotty and mosaic chlorosis, and necrosis were observed in flowering plants in the areas of uranium ore deposits at Deok-Peung-Ri A, B, and C in Koisan. Although 13 species were found to be chlorosis and necrosis, foliages observed are small and very rare. The features of these symptoms closely resemble those occured by the effects of heavy meetals. The amount of transparent radiation throughout the depth of soils from uranium radiation sources decreases exponentially. The mean contents in leaves of spotty and mosaik chlorotic plants, and soils were 1.36~1.53 and 5.3~7.4 ppm, respectively.

  • PDF

Hematological Study on the Effect of Mercury Chloride and lonizing Radiation in Immature Rats

  • Kim, Ji Hyang;Kim, Jin Kyu;Lee, Byoung Hun;Yoon, Yong Dal
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • Mercury, one of the most diffused and hazardous organ-specific environmental contaminants, exists in a wide variety of physical and chemical states. Although the reports indicate that the mercury induces a deleterious damage, little has been known from the investigations of its effects in living organisms. The purpose of this study is to evaluate the effects of mercury chloride and ionizing radiation. Prepubertal male F344 rats were administered mercury chloride in drinking water throughout the experimental period. Two weeks after whole body irradiation, organs were collected to analyze the induced injury. Serum levels of GOT, GPT, ALP, and LDH were checked in the experimental groups and the hematological analysis was accomplished in plasma. In conclusion, the target organ of mercury chloride seems to be urinary organs and the pattern of damage induced by mercury differs from that by irradiation.

  • PDF

Low-dose of Ultraviolet radiation-, Ethyl methanesulfonateor Bleomycin-lnduced Adaptive Response in Chinese hamster ovary Cells

  • Lee, Dong-Wook;Shin, Eun-Joo;Um, Kyung-Il
    • Environmental Mutagens and Carcinogens
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 1995
  • The adaptive response and cross-adaptive response to sister chromatid exchanges (SCEs) and DNA single-strand breaks (SSBs) in Chinese hamster ovary (CHO)-K$_1$ cells treated with ultraviolet radiation (UV), ethyl methanesuffonate (EMS), or bleomycin (BLM) were investigated. Two assays were used in this study; SCEs and alkaline elution. The pretreatment with low conditioning dose of 2 mM EMS or 1 J/m$^2$ UV decreased the yield of SCEs induced by subsequent treatment with 8 mM EMS, 5 J/m$^2$ UV or 5 $\mu$g/ml BLM. And the pretreatment with low conditioning dose of 1 $\mu$g/ml BLM decreased the yield of SCEs induced by subsequent treatment with 5 $\mu$g/ml BLM or 5 J/m$^2$ UV. The rejoining of DNA SSBs in cells subsequently treated with 2 J/m$^2$ UV, 50 mM EMS or 400 $\mu$g/ml BLM is higher than that only treated with 2 J/m$^2$ UV, 50 mM EMS or 400 $\mu$g/ml BLM. These results suggest that there are the adaptive response and cross-adaptive response to SCEs, and is the adaptive response to the rejoining of DNA SSBs in CHO cells.

  • PDF

Ionizing Radiations Induce Apoptosis in TRAIL Resistant Cancer Cells: in vivo and in vitro Analysis

  • Silva, Marcela Fernandes;Khokhar, Abdur Rehman;Qureshi, Muhammad Zahid;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.1905-1907
    • /
    • 2014
  • Increasingly it is being realized that despite considerable advancements in therapeutic interventions related to treatment of cancer, satisfactory results are still difficult to achieve. Rapidly accumulating evidence has started to shed light on the fact that cancer cells escape from death via constitutive activation of pro-survival signaling cascades. Cell biology and genetics have extensively enhanced our current understanding of the molecular mechanisms that underlie loss of apoptosis in cancer cells. This review is focused on ionizing radiation mediated restoration of TRAIL mediated apoptosis as evidenced by cell culture and animal model studies. Moreover, we also bring to the limelight radiation induced expression of miRNAs and how miRNAs further control response of cancer cells to radiation.

Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

  • Koo, Taeryool;Kim, In Ah
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents.

THE SHORT-TERM EFFECTS OF LOW-DOSE-RATE RADIATION ON EL4 LYMPHOMA CELL

  • Bong, Jin-Jong;Kang, Yu-Mi;Shin, Suk-Chul;Choi, Moo-Hyun;Choi, Seung-Jin;Lee, Kyung-Mi;Kim, Hee-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.56-62
    • /
    • 2012
  • To determine the biological effects of low-dose-rate radiation ($^{137}Cs$, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

Evaluation of DNA Damage Induced by Mercury Chloride (II) and Ionizing Radiation in the Earthworm (염화수은(II)과 이온화 방사선 처리에 따른 토양 내 환형동물의 DNA 손상 측정)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.4
    • /
    • pp.212-217
    • /
    • 2010
  • Soil pollution by heavy metals has become a significant environmental concern due to a variety of human activities. Specially toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The earthworms are very important animals that aerate the soil with their burrowing action and enrich the soil by decomposing organic matters. Especially the earthworm Eisenia fetida is routinely used in ecotoxicological studies. The levels of DNA damage in earthworms treated with HgCl2 and ionizing radiation were investigated in this study. Genotoxic effects were evaluated in the earthworm's coelomocytes using the comet assay (Single Cell Gel Electrophoresis; SCGE). The results showed that the mercury chloride and radiation were responsible for the genotoxic effects on earthworms. The level of DNA damage significantly increased after the treatment of mercury chloride combined with ionizing radiation. The combined treatment of $HgCl_2$ and ionizing radiation had a greater genotoxicity. This study is amenable to further study such as enzyme activation assay.

ADP-Ribosylation: Activation, Recognition, and Removal

  • Li, Nan;Chen, Junjie
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions.