• Title/Summary/Keyword: Radiation Treatment Planning

Search Result 621, Processing Time 0.028 seconds

A Comparison of Field-in-Field Intensity Modulated Radiation Therapy Planning and Conventional Radiation Therapy Planning with Tangential Beam for Breast Cancer (유방암의 접선조사 시 Field-in-Field Intensity Modulated Radiation Therapy와 Conventional Radiation Therapy의 전산화 치료계획에 관한 고찰)

  • Yoo, Soon-Mi;Yeom, Mi-Suk;Kim, Dae-Sup;Back, Geum-Mun;Kwon, Kyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • Purpose: To analyze differences in the dose uniformity for the computed breast radiation therapy planning with tangential beam between conventional RT using wedge filter and FiF-IMRT using multileaf collimator based onsizes and volumes of breasts. Materials and Methods: Thirty breast cancer patients were classified according to the sizes and volumes of the breasts using Eclipse treatment planning system ($Varian^{TM}$, USA, V8.0). Conformity Index and Homogeneity Index were computed along with Dose Volume Histogram. Results: No differencein CI (${\pm}1.2%$) was observed. However, lower mean HI (1.67%) in FiF-IMRT was observed compared to that of the conventional RT. Statically significant (P<0.01) correlation was identified between the values of ${\Delta}HI$ (%) and physical parameters such as breast volumes and separations. Conclusion: Increase in breast volume and separation improves the dose uniformities in computed radiation therapy planning for FiF-IMRT. Physical dimension of the breast should be considered to optimize the compured radiation therapy planning.

  • PDF

Enhancing value of quality assurance rounds in improving radiotherapy management: a retrospective analysis from King Hussein Cancer Center in Jordan

  • Khader, Jamal K.;Al-Mousa, Abdelatif M.;Mohamad, Issa A.;Abuhijlih, Ramiz A.;Al-Khatib, Sondos A.;Alnsour, Anoud Z.;Asha, Wafa A.;Ramahi, Shada W.;Hosni, Ali A.;Abuhijla, Fawzi J.
    • Radiation Oncology Journal
    • /
    • v.37 no.1
    • /
    • pp.60-65
    • /
    • 2019
  • Purpose: The quality assurance (QA) chart rounds are multidisciplinary meetings to review radiation therapy (RT) treatment plans. This study focus on describing the changes in RT management based on QA round reviews in a single institution. Materials and Methods: After 9 full years of implementation, a retrospective review of all patients whose charts passed through departmental QA chart rounds from 2007 to 2015. The reviewed cases were presented for RT plan review; subcategorized based on decision in QA rounds into: approved, minor modifications or major modifications. Major modification defined as any substantial change which required patient re-simulation or re-planning prior to commencement of RT. Minor modification included treatment plan changes which didn't necessarily require RT re-planning. Results: Overall 7,149 RT treatment plans for different anatomical sites were reviewed at QA rounds. From these treatment plans, 6,654 (93%) were approved, 144 (2%) required minor modifications, while 351 (5%) required major modifications. Major modification included changes in: selected RT dose (96/351, 27%), target volume definition (127/351, 36%), organs-at-risk contouring (10/351, 3%), dose volume objectives/constraints criteria (90/351, 26%), and intent of treatment (28/351, 8%). The RT plans which required major modification according to the tumor subtype were as follows: head and neck (104/904, 12%), thoracic (12/199, 6%), gastrointestinal (33/687,5%), skin (5/106, 5%), genitourinary (16/359, 4%), breast (104/2387, 4%), central nervous system (36/846, 4%), sarcoma (11/277, 4%), pediatric (7/251, 3%), lymphoma (10/423, 2%), gynecological tumors (2/359, 1%), and others (11/351, 3%). Conclusion: Multi-disciplinary standardized QA chart rounds provide a comprehensive and an influential method on RT plans and/or treatment decisions.

A Study for Optimal Dose Planning in Stereotactic Radiosurgery

  • Suh, Tae-suk
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1990
  • In order to explane the stereotactic procedure, the three steps of the procedure (target localization, dose planning, and radiation treatment) must be examined separately. The ultimate accuracy of the full procedure is dependent on each of these steps and on the consistancy of the approach The concern in this article was about dose planning, which is a important factor to the success of radiation treatment. The major factor in dose planning is a dosimetry system to evaluate the dose delivered to the target and normal tissues in the patient, while it generates an optimal dose distribution that will satisfy a set of clinical criteria for the patient. A three-dimensional treatment planning program is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. The major problems and possible modelings about 3-D factors and optimization technique were discussed to simplify and solve the problems associatied with 3-D optimization, with relative ease and efficiency. These modification can simplify the optimization problem while saving time, and can be used to develop reference dose planning system to prepare standard guideline for the selection of optimum beam parameters, such as the target position, collimator size, arc spacing, the variation in arc length and weight. The method yields good results which can then be simulated and tailored to the individual case. The procedure needed for dose planning in stereotactic radiosurgery is shown in figure 1.

  • PDF

Treatment Planning and Dosimetry of Small Radiation Fields for Stereotactic Radiosurgery (Stereotactic Radiosurgery를 위한 소형 조사면의 선량측정)

  • Chu Sung Sil;Suh Chang Ok;Loh John J.K.;Chung Sang Sup
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.101-112
    • /
    • 1989
  • The treatment planning and dosimetry of small fields for stereotactic radiosurgery with 10 MV x-ray isocentrically mounted linear accelerator is presented. Special consideration in this study was given to the variation of absorbed dose with field size, the central axis percent depth doses and the combined moving beam dose distribution. The collimator scatter correction factors of small fields $(1\times1\~3\times3cm^2)$ were measured with ion chamber at a target chamber distance of 300cm where the projected fields were larger than the polystyrene buildup caps and it was calibrated with the tissue equivalent solid state detectors of small size (TLD, PLD, ESR and semiconductors). The central axis percent depth doses for $1\timesl\;and\;3\times3cm^2$ fields could be derived with the same acuracy by interpolating between measured values for larger fields and calculated zero area data, and it was also calibrated with semiconductor detectors. The agreement between experimental and calculated data was found to be under $2\%$ within the fields. The three dimensional dose planning of stereotactic focusing irradiation on small size tumor regions was performed with dose planning computer system (Therac 2300) and was verified with film dosimetry. The more the number of strips and the wider the angle of arc rotation, the larger were the dose delivered on tumor and the less the dose to surrounding the normal tissues. The circular cone, we designed, improves the alignment, minimizes the penumbra of the beam and formats ball shape of treatment area without stellate patterns. These dosimetric techniques can provide adequate physics background for stereotactic radiosurgery with small radiation fields and 10MV x-ray beam.

  • PDF

Discrepancies in Dose-volume Histograms Generated from Different Treatment Planning Systems

  • Kim, Jung-in;Han, Ji Hye;Choi, Chang Heon;An, Hyun Joon;Wu, Hong-Gyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • Background: We analyzed changes in the doses, structure volumes, and dose-volume histograms (DVHs) when data were transferred from one commercial treatment planning system (TPS) to another commercial TPS. Materials and Methods: A total of 22 volumetric modulated arc therapy (VMAT) plans for nasopharyngeal cancer were generated with the Eclipse system using 6-MV photon beams. The computed tomography (CT) images, dose distributions, and structure information, including the planning target volume (PTV) and organs at risk (OARs), were transferred from the Eclipse to the MRIdian system in digital imaging and communications in medicine (DICOM) format. Thereafter, DVHs of the OARs and PTVs were generated in the MRIdian system. The structure volumes, dose distributions, and DVHs were compared between the MRIdian and Eclipse systems. Results and Discussion: The dose differences between the two systems were negligible (average matching ratio for every voxel with a 0.1% dose difference criterion = $100.0{\pm}0.0%$). However, the structure volumes significantly differed between the MRIdian and Eclipse systems (volume differences of $743.21{\pm}461.91%$ for the optic chiasm and $8.98{\pm}1.98%$ for the PTV). Compared to the Eclipse system, the MRIdian system generally overestimated the structure volumes (all, p < 0.001). The DVHs that were plotted using the relative structure volumes exhibited small differences between the MRIdian and Eclipse systems. In contrast, the DVHs that were plotted using the absolute structure volumes showed large differences between the two TPSs. Conclusion: DVH interpretation between two TPSs should be performed using DVHs plotted with the absolute dose and absolute volume, rather than the relative values.

Clinical Application of 3-D Compensator in Head and Neck Cancer (두경부암 환자 치료시 3차원 보상체의 임상 적용에 대한 고찰)

  • Hong, Dong-Ki;Lee, Jeong-Woo;Lee, Koo-Hyun;Park, Kwang-Ho;Kim, Jeong-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.64-70
    • /
    • 1997
  • The goal of radiation treatment planning is to deliver the dose to the patient within $5\%$ of that prescribed. We have often encountered the situation that the area which have not only several irregular contours but also tissue heterogeneities should be treated. With conventional devices such as wedges, missing tissue compensator. there are some limitations to achieve the uniform dose distribution in treatment volume. The use of CT simulator, 3-D planning system, computer-controlled milling machine enables it to deliver the dose uniformally. This report includes the whole procedure which have patient data acquisition 3D planning, computer-controlled milling, performance verification of 3D compensator, and TLD evaluation. We applied it for the treatment of head and heck cancer only. In Spite of the irregular contour and different electron density of tessue, we have achieved the uniformity of the dose distribution within ${\pm}3\%$ relatively. Although there are some problems which are not only verification of performance but uncertainties of using the new treatment device, we believe that the improvement of dosimetry will eliminate the uncertainties of that application. so the other lesions besides head and neck can will be ale to use the 3D compensator to achieve the dose uniformity

  • PDF

Evaluation of Ovary Dose of Childbearing age Woman with Breast cancer in Radiation therapy (가임기 여성의 방사선 치료 시 난소 선량 평가)

  • Park, Sung Jun;Lee, Yeong Cheol;Kim, Seon Myeong;Kim, Young Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.145-153
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the ovarian dose during radiation therapy for breast cancer in women of childbearing age through an experiment. The ovarian dose is evaluated by comparing and analyzing between the calculated dose in the treatment planning system according to the treatment technique and the measured dose using a thermoluminescence dosimeter (TLD). The clinical usefulness of lead (Pb) apron is investigated through dose analysis according to whether or not it is used. Materials and Methods: Rando humanoid phantom was used for measurement, and wedge filter radiation therapy, 3D conformal radiation therapy, and intensity modulated radiation therapy were used as treatment techniques. A treatment plan was established so that 95% of the prescribed dose could be delivered to the right breast of the Rando humanoid phantom 3D image obtained using the CT simulator. TLD was inserted into the surface and depth of the virtual ovary of the Rando hunmanoid phantom and irradiated with radiation. The measurement location was the center of treatment and the point moved 2 cm to the opposite breast from the center of the Rando hunmanoid phantom, 5cm, 10cm, 12.5cm, 15cm, 17.5cm, 20cm from the boundary of the right breast to the center of treatment and downward, and the surface and depth of the right ovary. Measurements were made at a total of 9 central points. In the dose comparison of treatment planning systems, two wedge filter treatment techniques, three-dimensional conformal radiotherapy, and intensity-modulated radiation therapy were established and compared. Treatments were compared, and dose measurements according to the use of lead apron were compared and analyzed in intensity-modulated radiation therapy. The measured value was calculated by averaging three TLD values for each point and converting using the TLD calibration value, which was calculated as the point dose mean value. In order to compare the treatment plan value with the actual measured value, the absolute dose value was measured and compared at each point (%Diff). Results: At Point A, the center of treatment, a maximum of 201.7cGy was obtained in the treatment planning system, and a maximum of 200.6cGy was obtained in the TLD. In all treatment planning systems, 0cGy was calculated from Point G, which is a point 17.5cm downward from the breast interface. As a result of TLD, a maximum of 2.6cGy was obtained at Point G, and a maximum of 0.9cGy was obtained at Point J, which is the ovarian dose, and the absolute dose was 0.3%~1.3%. The difference in dose according to the use of lead aprons was from a maximum of 2.1cGy to a minimum of 0.1cGy, and the %Diff value was 0.1%~1.1%. Conclusion: In the treatment planning system, the difference in dose according to the three treatment plans did not show a significant difference from 0.85% to 2.45%. In the ovary, the difference between the Rando humanoid phantom's treatment planning system and the actual measured dose was within 0.9%, and the actual measured dose was slightly higher. This did not accurately reflect the effect of scattered radiation in the treatment planning system, and it is thought that the dose of scattered radiation and the dose taken by CBCT with TLD inserted were reflected in the actual measurement. In dosimetry according to the with or without a lead apron, when a lead apron was used, the closer the distance from the treatment range, the more effective the shielding was. Although it is not clinically appropriate for pregnancy or artificial insemination during radiotherapy, the dose irradiated to the ovaries during treatment is not expected to significantly affect the reproductive function of women of childbearing age after radiotherapy. However, since women of childbearing age have constant anxiety, it is thought that psychological stability can be promoted by presenting the data from this study.