• Title/Summary/Keyword: Radiation Shielding

Search Result 613, Processing Time 0.022 seconds

A Study on the Radiation Source Effect to the Radiation Shielding Analysis for a Spent-Fuel Cask Design with Burnup-Credit (연소도이득효과를 적용한 사용후핵연료 수송용기의 방사선원별 차폐영향 분석)

  • Kim, Kyung-O;Kim, Soon-Young;Ko, Jae-Hoon;Lee, Gang-Ug;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The radiation shielding analysis for a Burnup-credit (BUC) cask designed under the management of Korea Radioactive Waste Management Corporation (KRMC) was performed to examine the contribution of each radiation source affecting dose rate distribution around the cask. Various radiation sources, which contain neutron and gamma-ray sources placed in active fuel region and the activation source, and imaginary nuclear fuel were all considered in the MCNP calculation model to realistically simulate the actual situations. It was found that the maximum external and surface dose rates of the spent fuel cask were satisfied with the domestic standards both in normal and accident conditions. In normal condition, the radiation dose rate distribution around the cask was mainly influenced by activation source ($^{60}Co$ radioisotope); in another case, the neutron emitted in active fuel region contributed about 90% to external dose rate at 1m distance from side surface of the cask. Besides, the contribution level of activation source was dramatically increased to the dose rates in top and bottom regions of the cask. From this study, it was recognized that the detailed investigation on the radiation sources should be performed conservatively and accurately in the process of radiation shielding analysis for a BUC cask.

Effects of Radiation Dose on Mechanical Properties of Resin-Type Neutron Shielding Materials (방사선 조사선량이 수지계 중성자 차폐재의 역학적 성질에 미치는 영향)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kim, Hwan-Young;Do, Jae-Bum;Ro, Seung-Gy
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.92-98
    • /
    • 1997
  • Effects of radiation dose on mechanical properties such as tensile strength, compressive strength, flexural strength, specific gravity and changes of weight and hydrogen content of epoxy resin-type neutron shielding materials to be used for spent fuel shipping casks have been investigated. At radiation dose up to 0.5MGy, the tensile strength, compressive strength and flexural strength of the shielding materials of KNS-115A, KNS-115B and KNS-115C have been increased with increase in the radiation dose. In contract, these mechanical properties have been decreased at radiation dose above 0.5MGy. The amount of radiation dose on the materials of KNS-115A, KNS-115B and KNS-115C has not resulted in a measurable loss of specific gravity and weight of them, whereas the reduction of hydrogen content has been observed.

  • PDF

Effectiveness of Bismuth Shield to Reduce Eye Lens Radiation Dose Using the Photoluminescence Dosimetry in Computed Tomography (CT 검사에서 유리선량계를 이용한 수정체의 비스무트 차폐 효과)

  • Jung, Mi-Young;Kweon, Dae-Cheol;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • The purpose of our study was to determine the eyeradiation dose when performing routine multi-detector computed tomography (MDCT). We also evaluated dose reduction and the effect on image quality of using a bismuth eye shield when performing head MDCT. Examinations were performed with a 64MDCT scanner. To compare the shielded/unshielded lens dose, the examination was performed with and without bismuth shielding in anthropomorphic phantom. To determine the average lens radiation dose, we imaged an anthropomorphic phantom into which calibrated photoluminescence glass dosimeter (PLD) were placed to measure the dose to lens. The phantom was imaged using the same protocol. Radiation doses to the lens with and without the lensshielding were measured and compared using the Student t test. In the qualitative evaluation of the MDCT scans, all were considered to be of diagnostic quality. We did not see any differences in quality between the shielded and unshielded brain. The mean radiation doses to the eyewith the shield and to those without the shield were 21.54 versus 10.46 mGy, respectively. The lens shield enabled a 51.3% decrease in radiation dose to the lens. Bismuth in-plane shielding for routine eye and head MDCT decreased radiation dose to the lenswithout qualitative changes in image quality. The other radiosensitive superficial organs specifically must be protected with shielding.

  • PDF

Evaluation of the Space Scattered Dose According to the Position of the Radiation Workers in Mammography Room (유방촬영 시 방사선관계종사자의 위치에 따른 공간선량평가)

  • Lee, Dong-Yeon;Lee, Jin-Soo
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • This study was conducted to evaluate the dose of the space to the controller located within the mammography room conducted a research on ways to the reduction exposure to the radiation workers. Results, the dose of 6.18 mGy/year was measured when there is no difference in the hilar area of the controller position, the dose of 2.35E-11 mGy/year was measured when installing the Shielding door. In addition, when the direction of the X-ray tube anode be heading this direction controller, low average level measured was 0.30 mGy/year. Based on this study, the mammography should be considered when installing the anode and cathod directions. And, by installing the shielding door, it must be able to completely separate shooting space and control room. This is the best way radiation protection method in radiation workers.

COMPARISON OF APPROXIMATE MODELS FOR HIGH ENERGY COSMIC RADIATION SHIELDING CALCULATION (고에너지 우주방사선 차폐계산을 위한 근사모델 비교)

  • 신명원;김명현
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.151-162
    • /
    • 2002
  • Two approximate calculation models for a cosmic radiation shielding in satellite are compared with detailed 3-dimensional calculation results. One is a sectoring method and the other is a chord-length distribution method. Shielding caltulation is performed for KITSAT-1 under the assumed environment at SAA (South Atlantic Anomaly) location with AP-8 radiation spectrum model. When both approximate models are applied, calculation error is expected compared with 3-D detailed geometry calculation because of straight knock-on assumption neglecting the deflection of incident proton. However, both approximate models showed good agreements with 3-dimensional detailed Monte Carlo calculation in two dose detector locations.

SHIELDING DESIGN ANALYSES FOR SMART CORE WITH 49-CEDM

  • Kim, Kyo-Youn;Kim, Ha-Yong;Cho, Byung-Oh;Zee, Sung-Quun;Chang, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • In Korea, an advanced reactor system of 330MWt power called SMART (System integrated Modular Advanced ReacTor) is being developed by KAERI to supply energy for seawater desalination as well as electricity generation. A shielding design of the SMART core with 49 CEDM is established by a two-dimensional discrete ordinates radiation transport analyses. The DORT two-dimensional discrete ordinates transport code is used to evaluate the SMART shielding designs. Three axial regions represent the SMART reactor assembly, each of which is modeled in the R-Z geometry. The BUGLE-96 library is used in the analyses, which consists of 47 neutron and 20 gamma energy groups. The results indicate that the maximum neutron fluence at the bottom of reactor vessel is $5.89 {\times} 10^{17}\;n/cm^2$ and that on the radial surface of reactor vessel is $4.49 {\times} 10^[16}\;n/cm^2$. These results meet the requirement, $1.0 {\times} 10^{20}\;n/cm^2$, in 10 CFR 50.61 and the integrity of SMART reactor vessel during the lifetime of the reactor is confirmed.

  • PDF

Investigation of acrylic/boric acid composite gel for neutron attenuation

  • Ramadan, Wageeh;Sakr, Khaled;Sayed, Magda;Maziad, Nabila;El-Faramawy, Nabil
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2607-2612
    • /
    • 2020
  • The present work was aimed to show the possibility of using hydrogel (acrylic/boric acid) for evaluation of the neutron radiation shielding. The influence of acrylic acid concentration, different gamma doses and relative contents of boric acid were studied. The physical properties and the thermomechanical stability of the studied samples were investigated. The shielding property of the composite for neutron was tested by Pu-Be neutron source (5 Ci) under room temperature. The neutron fluence rates and gamma fluxes were measured using a stilbene organic scintillator. The macroscopic effective removal cross-section ΣR (cm-1) of fast neutrons and total attenuation coefficient μ (cm-1) of gamma rays has been studied experimentally. The transmission parameters, the relaxation length (??) and the half-value layer (HVL) were obtained. The obtained results indicated that the addition of boric acid to acrylic acid tends to increase the macroscopic effective removal cross-section ΣR (cm-1) to 0.141 compared to 0.094 of ordinary concrete.

Satellite Anomalies due to Spce Environment Events (우주환경 이벤트에 의한 위성의 이상현상)

  • Park, Jae-Woo;Jeong, Cheol-Oh
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • Space Environment including Solar activities such as Solar explosion, Corona Mass Ejection(CMS) is always not friendly for human. Especially it may be fatal to artificial satellites. The lifetime of geostationary communication satellites are reducing due to plasma such as electrons, protons etc. emitting from Sun. This is because the active components constituting communication satellite are easily affected by plasma. Even though the radiation shielding on the components can be a way to prevent, the cost will be high. So the appropriate shielding is necessary and the study on space environment is also. In this study spacecraft anomalies will be investigated from low earth orbit to deep space spacecraft and the correlation between spacecraft anomalies and space environment events including space explosion, geomagnetic storms etc is analyzed.

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.