• Title/Summary/Keyword: Radiation Shielding

Search Result 613, Processing Time 0.027 seconds

Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet (방사선 차폐시트의 적층 구조와 섬유 코팅의 융합적인 현상이 인장강도에 미치는 영향)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.83-88
    • /
    • 2020
  • Recently, radiation shielding sheets made of eco-friendly materials have been widely used in medical institutions. The shielding sheet is processed into a solid form by thermoforming by mixing a shielding material with a polymer material. The base is resin-based and has a limit in tensile strength, and for this purpose, fibers such as non-woven fabrics are used on the surface. The shielding sheet process technology has a problem in that the tensile strength rapidly decreases when the content of the shielding material is increased to increase the shielding performance. In order to improve this, this study intends to compare and evaluate the method of laminating and coating the fibers in the sheet process. In comparison of the three types of sheets, there was no difference in shielding performance between the fiber-coated sheet and the compression sheet, but there was a large difference in tensile strength.

Development and Performance Comparison of Silicon Mixed Shielding Material (실리콘 혼합 차폐체의 개발과 성능비교)

  • Hoi-Woun Jeong;Jung-Whan Min
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.187-195
    • /
    • 2023
  • A shield was made by mixing materials such as bismuth(Bi) and barium(Ba) with silicon to evaluate its shielding ability. Bismuth was made into a shield by mixing a bismuth oxide(Bi2O3) colloidal solution and a silicon base and applied to a fibrous fabric, and barium was made by mixing lead oxide(PbO) and barium sulfate(BaSO4) with a silicon curing agent and solidifying it to make a shield. The test was conducted according to the lead equivalent test method for X-ray protective products of the Korean Industrial Standard. The experiment was conducted by increasing the shielding body one by one from the test condition of 60 kVp, 200 mA, 0.1sec and 100 kVp, 200 mA, 0.1 sec. At 60 kVp, 2 lead oxide-barium sulfate shields, 2 bismuth oxide 1.5 mm shields, and 5 bismuth oxide 0.3 mm shields showed shielding ability equal to or higher than that of lead 0.5 mm. At 100 kVp, 2 lead oxide-barium sulfate shields and 2 bismuth oxide 1.5 mm shields showed shielding ability equal to or higher than that of lead 0.5 mm. It was confirmed that when using 2 pieces of lead oxide-barium sulfate and 1.5 mm of bismuth oxide, respectively, it has shielding ability equivalent to that of lead. Bismuth oxide and lead oxide-barium sulfate are lightweight and have excellent shielding ability, thus they have excellent properties to be used as an apron for radiation protection or other shielding materials.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

The Use of Lens Shielding Device(L.S.D.) for a Conjunctival Lymphoma

  • Cho Hyun Sang;Ju Sang Gyu;Song Ki Won;Park Young Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.40-45
    • /
    • 1997
  • When therapeutic irradiation is indicated for the orbital tumors, the greatest concern is the risk of radiation-induced cataract. Conjunctival lymphoma is one of the good examples. We would like to report the procedure of the lens shielding device(L.S.D) and the result of irradiated dose to the lens. L.S.D. consistes of two parts : load alloy to attenuate electron beam, and dental acryl which completely covers the lead alloy to avoid discomfort of cornea from contacting directly with cerrobend and side scattering by cerrobend. And for easy location and removal, side bars were made on each side. Radiation doses were meaured with TLD(TLD 3500 Hawshaw). Markus chamber in a polystyrene phantom. The phantom was irradiated with 9MeV electron beams from Clinac 2100C with $6{\times}6cm$ electron cone. The relative dose at 6mm depth where the lens is located was $4.2\%$ with TLD and $5.1\%$ with Markus chamber clinically when 2600 cGy are irradiated to the eyeball, the mapinary dose to the lens will be 109 cGy or 132 cGy, which will significently reduce the cataract.

  • PDF

Preliminary Study for Development of Low Dose Radiation Shielding Material Using Liquid Silicon and Metalic Compound (액상 실리콘과 금속화합물을 융합한 저선량 방사선 차폐 소재 개발을 위한 사전연구)

  • Jang, Seo Goo;Han, Su Chul;Kang, Sung Jin;Lim, sung wook;Lee, Sung Soo
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.461-468
    • /
    • 2017
  • This study measured and compared the protective clothing using Pb used for shielding in a diagnostic X-ray energy range, and the shielding rates of X-ray fusion shielding materials using Si and $TiO_2$. For the experiment, a pad type shielding with a thickness of 1 mm was prepared by mixing $Si-TiO_2$, and the X-ray shielding rate was compared with 0.5 mmPb plate of The shielding rate of shielding of 0.5 mmPb plate 95.92%, 85.26 % based on the case of no shielding under each 60 kVp, 100 kVp tube voltage condition. When the shielding of $Si-TiO_2$ pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 11 mm or more, and the shielding rate of 100% or more was confirmed at a thickness of 13 mm in 60 kVp condition. When the shielding of $Si-TiO_2$ pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 17 mm or more, and a shielding rate of 0.5 mmPb plate was observed at a thickness of 23 mm in 100 kVp condition. Through the results of this study, We could confirm the possibility of manufacturing radiation protective materials that does not contain lead hazard using various metalic compound and liquid Si. This study shows that possibility of liquid Si and other metalic compound can harmonize easily. Beside, It is flexible and strong to physical stress than Pb obtained radiation protective closthes. But additional studies are needed to increase the shielding rate and reduce the weight.

Shielding Effectiveness of Mesh Screen Filter of Plasma Display Panel

  • Lim, Heon-Yong;Kim, Min-Seok;Lee, Jeong-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.568-570
    • /
    • 2004
  • A shielding effectiveness of mesh screen filter of plasma display panel (PDP) has been calculated in this paper. Since the screen filter is located near the radiation source, the near field wave impedance of the radiation source, i.e., the PDP electrodes, has been considered to calculate the shielding effectiveness. The near field shielding effectiveness of screen filter at 30${\sim}$300 MHz has been estimated to be more than 65${\sim}$80 dB. The measured shielding effectiveness of screen filter is 10${\sim}$50 dB at 30${\sim}$300 MHz[1]. The resulting discrepancy indicates that there are other EMI emission sources such as emission from PCB and cable besides the PDP electrodes.

  • PDF

Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets (무연 방사선 융합 차폐시트 단일 구조와 적층 구조의 비교를 통한 두께별 차폐성능 예측)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.105-110
    • /
    • 2021
  • Radiation shielding of affinity material, which is widely used in medical institutions, is made in sheet form and is mainly applied to apron. Shielding performance is presented based on lead equivalent, and is presented as 0.25-0.50mmPb. In the case of shielding materials where lead is used as the main material, the shielding performance can be adjusted by thickness due to the excellent machinability of lead. However, eco-friendly shielding sheets are difficult to control shielding performance based on thickness criteria as shielding performance varies depending on the content of shielding materials, the properties of polymeric materials that are base materials, and the technical differences in the process. In this study, shielding sheets were manufactured based on thickness to solve these problems and the shielding performance was compared in this study. As a result, it was shown that the laminated structure shielding sheet was more effective.

Production and Utility Assessment of Pediatric Genital Shields Using 3D Printing Technology with Colorjet 3D Printing (결합제 분사 방식 3D 프린팅 기술을 활용한 소아 생식기 차폐체 제작 및 유용성 평가)

  • In-Ja Lee;Da-Yeong Hong
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this study, the aim was to assess the shielding performance of different 3D printing materials, specifically those produced using FDM, SLA, and CJP methods, with a focus on their application as shielding devices in clinical settings. Additionally, the weight of lead shielding materials can evoke reluctance in pediatric patients undergoing X-ray imaging. A total of 12 materials were printed using their respective 3D printers. These materials were then subjected to X-ray testing using diagnostic X-ray equipment and an exposure meter. The goal was to evaluate their shielding capabilities in comparison to 1 mm lead. The results of this evaluation revealed that VisiJet PXL-Pastel, produced using the CJP method, exhibited the highest shielding performance. Therefore, VisiJet PXL-Pastel by CJP method was selected for the creation of a shielding device designed for pediatric reproductive organs. Subsequent tests demonstrated that both the newly created shielding device and conventional lead shielding equipment achieved the same maximum shielding rate at 50 kVp. Specifically, the shielding rate for the 3D printed device was measured at 84.53%, while the conventional lead shielding equipment, categorized as Apron1 (85.74%), Apron2 (99.98%), and Apron3 (99.04%), demonstrated similar performance. In conclusion, the CJP-produced VisiJet PXL-Pastel material showcased excellent radiation shielding capabilities, allowing for anatomical observations of the target organs and their surrounding structures in X-ray images. Furthermore, its lower weight in comparison to traditional lead shielding materials makes it a clinically practical and useful choice, particularly for pediatric applications.

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M.;Tekin, H.O.;Zakaly, Hesham MH.;Pyshkina, Mariia;Issa, Shams A.M.;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2078-2084
    • /
    • 2020
  • Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.

Dose Distribution for Eye Shielding Block In 6 MV Photon Beam Therapy (6 MV 광자선치료에서 안구차폐기구의 제작과 선량분포 측정)

  • Lee, Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 1992
  • The eye lens is known to be radiosensitive organ and catarat can be induced by relatively low dose of radiation. In the treatment of head and neck tumors, shielding blocks are frequently used to minimize dose on sensitive organs. The shielding block, which is made of high atomic number materials (cerrobend), produce significant dose perturbations in megavoltage photon beams. The effects of these perturbations of eye shielding blocks are measured with film and ion chambers for the treatment of head and neck malignancies. Optimum parameters for the treatment are suggested.

  • PDF