Browse > Article
http://dx.doi.org/10.15207/JKCS.2020.11.6.083

Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet  

Kim, Seon-Chil (Department of Biomedical Engineering, Keimyung University)
Publication Information
Journal of the Korea Convergence Society / v.11, no.6, 2020 , pp. 83-88 More about this Journal
Abstract
Recently, radiation shielding sheets made of eco-friendly materials have been widely used in medical institutions. The shielding sheet is processed into a solid form by thermoforming by mixing a shielding material with a polymer material. The base is resin-based and has a limit in tensile strength, and for this purpose, fibers such as non-woven fabrics are used on the surface. The shielding sheet process technology has a problem in that the tensile strength rapidly decreases when the content of the shielding material is increased to increase the shielding performance. In order to improve this, this study intends to compare and evaluate the method of laminating and coating the fibers in the sheet process. In comparison of the three types of sheets, there was no difference in shielding performance between the fiber-coated sheet and the compression sheet, but there was a large difference in tensile strength.
Keywords
Radiation; Shielding sheet; Tensile strength; Binder process; Laminated structure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wasan K, Jassim T. Mahdi & Ammar S. Hameed. (2019). Measurement technique of linear and mass attenuation coefficients of polyester, AIP Conference Proceedings, 2144(1), 1-11 DOI : 10.1063/1.5123088
2 Oleksy, M., Heneczkowski, M. & Galina, H. (2005). Chemosetting resins containing fillers Unsaturated polyester resin compositions containing modified smectites, Journal of Applied Polymer Science, 96(3), 793-801. DOI : 10.1002/app.21512   DOI
3 Majid Mirzaei, Mohammad Zarrebini & Ahmad Shirani. (2018). X-ray shielding behavior of garment woven with melt-spun polypropylene mono-filament. Powder Technology, 345(1), 15-25 DOI : 10.1016/j.powtec.2018.12.069
4 S. Yamazaki1, R. Furukawa & N. Morimitsuet. (2019). Disposal criteria setting method considering damaged position of X-ray protective clothing, European socity of Radiology, 640, 1-8 DOI : 10.26044/ecr2019/C-0640
5 A. R. Jeong, J. K. Park & I. H. Choi. (2019). The Fabrication and Characteristic Evaluation of Radiation Protection Sheets using an Eco-friendly Shielding Material. Electronics and Information Engineers, 6, 1380-1381.
6 C. H. Kim & S. H. Cho. (2019). Analysis of the Correlation between Shielding Material Blending Characteristics and Porosity for Radiation Shielding Films. Applied science, 9, 2-9. DOI : 10.3390/app9091765   DOI
7 K. W. Kim, S. H. Choi, K. Y. Kim, I. P. Lee, S. G. Hwang & K. R. Dong. (2017). Performance Evaluation of Aprons according to Lead Equivalent and Form Types. Journal of Radiation Industry, 10(4), 219-225.
8 C. H. Kim & J. R. Choi. (2018). Analyzing physical characteristics and shielding efficiency for non-lead medical radiation shielding sheets improved using PMMA. Radiation Effects and Defects in Solids, 174, 284-293 DOI : 10.1080/10420150.2018.1563897   DOI
9 J. H. Yun, J. A. Hou, W. G. Jang & J. H. Kim. (2019). Preparation and Optimization of Composition of Medical X-ray Shielding Sheet Using Tungsten. Polymer Korea, 43(3), 346-350. DOI : 10.7317/pk.2019.43.3.346   DOI
10 Yu, L., Bruesewitz. M. R. & Vrieze, T. J. (2019). Lead Shielding in Pediatric Chest CT: Effect of Apron Placement Outside the Scan Volume on Radiation Dose Reduction. American Journal of Roentgenology, 212(1), 151-156. DOI : 10.2214/AJR.17.19405   DOI
11 S. C. Kim, H. K. Lee & J. H. Cho. (2014). Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets. Radiat. Eff. Defect. Solids, 169, 584-591 DOI : 10.1080/10420150.2014.920019   DOI
12 A. H. O. Alkhayatt & A. Al-Azzawi. Alakayashi. (2016). Rheological and optical characterization of polyvinyl pyrrolidone (PVP) - polyethylene glycol (PEG) polymer blends, IOSR Journal of Applied Physics, 8(1), 11-18. DOI: 10.9790/4861-08111118
13 L. Chang et al. (2015). Preparation and characterization of tungsten/epoxy composites for ${\gamma}$-rays radiation shielding. Nucl. Instrum. Methods Phys. Res. B, 356-357, 88-93. DOI : 10.1016/j.nimb.2015.04.062   DOI
14 J. H. Song, S, S. Shin & S. I. Kim. (2016). A Study on The Assessment of Treatment Technologies for Efficient Remediation of Radioactively-Contaminated Soil, Nuclear Fuel Cycle and Waste Technology, 14(3), 245-251, DOI : 10.7733/jnfcwt.2016.14.3.245   DOI
15 J. K. Park, I. H. Choi, H. H. Park, S. W. Yang, K. T. Kim & S. S. Kang. (2016). Design of Double Layer Shielding Structure using Eco-friendly Shielding Materials, Journal of the Korean Society of Radiology, 10(8), 559-563. DOI : 10.7742/jksr.2016.10.8.559   DOI
16 K. Yue et al. (2009). A new lead-free radiation shielding material for radiotherapy. Radiat. Prot. Dosim, 133, 256-260. DOI : 10.1093/rpd/ncp053   DOI
17 Sony Ahmed et al. (2019). Polyethylene Based Jute Reinforced Composite Materials for Radiation Shielding Application by Using Magnetite as Filler, Euro. J. Adv. Engg. Tech, 6(9), 1-11
18 T. Nakagawa, H. B. Hopfenberg & V. Stannett. (1971). Radiation protection of poly(vinyl chloride) by N methyl dithiocarbamate substitution. Journal of Applied Polymer Science, 15(3), 747-758. DOI : 10.1002/app.1971.070150319   DOI