• Title/Summary/Keyword: Radiation Protection Material

Search Result 191, Processing Time 0.025 seconds

Effects of surface radiation on the insulation for mechanical system (표면복사특성이 단열성능에 미치는 영향)

  • Oh, Dong-Eun;Park, Jong-Il;Lee, Min-Woo;Hong, Jin-Kwan;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1006-1011
    • /
    • 2006
  • In this study, a rational procedures for estimation of insulation thickness for condensation control or personnel protection has been investigated. Both horizontal pipe and vertical wall configuration are included. Design parameters are pipe diameter or, height of the wall, thermal conductivity, emissivity, and operating temperatures. The results Indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient. Adequate revision of specifications or standards has been also suggested.

  • PDF

Deriving the Effective Atomic Number with a Dual-Energy Image Set Acquired by the Big Bore CT Simulator

  • Jung, Seongmoon;Kim, Bitbyeol;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.171-177
    • /
    • 2020
  • Background: This study aims to determine the effective atomic number (Zeff) from dual-energy image sets obtained using a conventional computed tomography (CT) simulator. The estimated Zeff can be used for deriving the stopping power and material decomposition of CT images, thereby improving dose calculations in radiation therapy. Materials and Methods: An electron-density phantom was scanned using Philips Brilliance CT Big Bore at 80 and 140 kVp. The estimated Zeff values were compared with those obtained using the calibration phantom by applying the Rutherford, Schneider, and Joshi methods. The fitting parameters were optimized using the nonlinear least squares regression algorithm. The fitting curve and mass attenuation data were obtained from the National Institute of Standards and Technology. The fitting parameters obtained from stopping power and material decomposition of CT images, were validated by estimating the residual errors between the reference and calculated Zeff values. Next, the calculation accuracy of Zeff was evaluated by comparing the calculated values with the reference Zeff values of insert plugs. The exposure levels of patients under additional CT scanning at 80, 120, and 140 kVp were evaluated by measuring the weighted CT dose index (CTDIw). Results and Discussion: The residual errors of the fitting parameters were lower than 2%. The best and worst Zeff values were obtained using the Schneider and Joshi methods, respectively. The maximum differences between the reference and calculated values were 11.3% (for lung during inhalation), 4.7% (for adipose tissue), and 9.8% (for lung during inhalation) when applying the Rutherford, Schneider, and Joshi methods, respectively. Under dual-energy scanning (80 and 140 kVp), the patient exposure level was approximately twice that in general single-energy scanning (120 kVp). Conclusion: Zeff was calculated from two image sets scanned by conventional single-energy CT simulator. The results obtained using three different methods were compared. The Zeff calculation based on single-energy exhibited appropriate feasibility.

Radiation Detection System for Prevention of Illicit Trafficking of Nuclear and Radioactive Materials

  • Kwak, Sung-Woo;Chang, Sung-Soon;Yoo, Ho-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.167-171
    • /
    • 2010
  • Fixed radiation portal monitors (RPMs) deployed at border, seaport, airport and key traffic checkpoints have played an important role in preventing the illicit trafficking and transport of nuclear and radioactive materials. However, the RPM is usually large and heavy and can't easily be moved to different locations. These reasons motivate us to develop a mobile radiation detection system. The objective of this paper is to report our experience on developing the mobile radiation detection system for search and detection of nuclear and radioactive materials during road transport. Field tests to characterize the developed detection system were performed at various speeds and distances between the radioactive isotope (RI) transporting car and the measurement car. Results of measurements and detection limits of our system are described in this paper. The mobile radiation detection system developed should contribute to defending public's health and safety and the environment against nuclear and radiological terrorism by detecting nuclear or radioactive material hidden illegally in a vehicle.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Evaluation of Tungsten Blended Filament Shields Made by 3D Printer in Radiography (일반촬영분야에서의 3D 프린터로 제작한 텅스텐 혼합 필라멘트 차폐체의 성능평가)

  • Yoon, Joon;Yoon, Myenog-Seong
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.615-621
    • /
    • 2021
  • In the medical field, radiation provides information for the diagnosis and treatment of diseases. As the use of radiation increases and the risk of exposure increases, interest in radiation protection is also rapidly increasing. Lead shielding material is mainly used, which has a risk of lead poisoning and absorption into the body. Tungsten mixed filament shielding sheets were fabricated with a size of 70 × 70 mm and a thickness of 1, 2, and 4 mm by using a 3D printer. In the general shooting experiment, the thickness of the shielding sheet is 1 ~ 5mm, the tube voltage is 60, 80, 100, 120 kVp and the tube current is 20, 40 mAs. In general photography, Tungsten showed better shielding rate compared to Brass, Copper, and Lead protective tools under all irradiation conditions, and in particular, Tungsten 5 mm showed 100% shielding rate. The 3D-printed tungsten mixed filament shielding is expected to be used as a new shield that can replace the existing lead protection tools as it shows a better shielding rate than the existing lead protection tools in Radiography.

Development of Internal Dose Assessment Procedure for Workers in Industries Using Raw Materials Containing Naturally Occurring Radioactive Materials

  • Choi, Cheol Kyu;Kim, Yong Geon;Ji, Seung Woo;Koo, Boncheol;Chang, Byung Uck;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.291-300
    • /
    • 2016
  • Background: It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. Materials and Methods: The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. Results and Discussion: The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are $10Bq{\cdot}g^{-1}$ for $^{40}K$ and $1Bq{\cdot}g^{-1}$ for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups ( < 0.1 mSv, 0.1-0.3 mSv, and > 0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels ( < 0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and > 1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. Conclusion: The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

Awareness Patterns Regarding Radiation Safety Management in Fields Related to Radiation Safety Regulations: Focusing on Companies that Must Report Radiation Sources

  • Eunok Han;Yoonseok Choi
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.19-28
    • /
    • 2024
  • Background: This study aims to analyze radiation safety management and regulatory perceptions, focusing on companies that must report radiation sources. The intent is to reduce the gap between regulation measures and addressing real concerns while improving practical safety management measures and regulations for all stakeholders. Materials and Methods: Radiation safety officers at a total of 244 reporting companies using radiation generators (79.8%) and sealed radioisotopes (15.1%) were surveyed using a questionnaire. Results and Discussion: The perception that regulation is stronger than the actual risk of the radiation source used was 3.47 points (out of 5 points), indicating a score above average. The most important factors and considerations were education and training (48%) as a human factor, safety devices of the radiation source (71.3%) as a hazardous material factor, the use of radiation (50.8%) as an organizational environment, and the radiation effect of nearby facilities (67.2%) as a physical environment. Radiation safety management educational experience (F= 5.030, p< 0.01), the group with high subjective knowledge (t= 6.017, p< 0.001), and the group with high objective knowledge (t= 1.989, p< 0.05) was found to be better at radiation safety management. Conclusion: It is necessary to standardize the educational experience regarding radiation safety management because each staff member has individual differences in educational experience. It is necessary to provide more information on how to solve radiation accidents via educational content. Applying radiation safety regulations based on the factors that significantly affect radiation safety management shown in this survey will help improve safety.

Collimator Design and Manufacture for $M{\ddot{o}}ssbauer$ Source ($M{\ddot{o}}ssbauer$ 선원용 콜리메이터 설계 및 제작)

  • Park, Sung-Ho;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.183-187
    • /
    • 2003
  • Collimator for $M{\ddot{o}}ssbauer$ source was manufactured for compton scattering experiment. Exposure dose rate was calculated and measured using GM counter for radiation evaluation. These results were well agreed to each other and used for collimator design. SUS303 was used for collimator material because exposure dose rate at 10 cm is about 2 mR/h. The radiation emited from the 35 mm, 65 mm hole was measured using gamma camera which have 4' diameter. 2-D radiation image was acquired and analyzed. The radiation size at Gamma Camera was 8.0 mm and 5.8 mm respectively.

THIN-FILM-COATED DETECTORS FOR NEUTRON DETECTION

  • McGregor Douglas S.;Gersch Holly K.;Sanders Jeffrey D.;Klann Raymond T.;Lindsay John T.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2001
  • Semiconductor diode detectors coated with neutron reactive material are presently under investigation for various uses, such as remote sensing of thermal neutrons, fast neutron counting, and thermal neutron radiography. Theory indicates that single-coated devices can yield thermal neutron efficiencies from 4% to 11 %, which is supported by experimental evidence. Radiation endurance measurements indicate that the devices function well up to a limiting thermal neutron fluence of $10^{13}/cm^2$, beyond which noticeable degradation occurs. Thermal neutron contrast images of step wedges and simple phantoms, taken with dual in-line pixel devices, show promise for thermal neutron imaging detectors.

  • PDF

Radiation Protection Effects of Dendranthema Zawadskii Var. Latilobum (Maxim.) Kitam. Extracts on Blood Cells, Intestine, and Uterus of Female SD Rats Irradiated with Gamma-Ray 10 Gy (구절초 추출물이 감마선 10 Gy에 조사된 암컷 SD Rat의 혈구 및 소장, 자궁에 미치는 방사선 방호효과)

  • Sung-Hyun, Joo;Hae-Suk, Kim;Sang-Hyun, Jeong;Jae-Gyeong, Choi;Seong-Ok, Jin;Byung-In, Min
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.23-28
    • /
    • 2023
  • The purpose of this study is to see the radiation protection effect of the oral injected Dendranthema zawadskii var. latilobum (Maxim.) Kitam. extracts on the small intestine and uterus of female SD Rat as a natural radiation protection agent. The experimental group was divided into four groups: Normal Control group (NC group), Injected Dendranthema zawadskii var. latilobum (Maxim.) Kitam. extracts group (DZ group), irradiated group after injecting Dendranthema zawadskii var. latilobum (Maxim.) Kitam. extracts (DZ+IR group). The whole body of SD Rat was irradiated with gamma-ray 10Gy, and the administration of oral Dendranthema zawadskii var. latilobum (Maxim.) Kitam. Extract was 2 cc (71.56 mg/day/kg) once a day for 2 weeks. For this study, chages in blood cell levels, SOD assay, small intestine and uterus were observed. In the 21st white blood cell level, the DZ+IR group recovered to a normal level, and the IR group didn't. The IR group villus length was lower than other groups on Day 1. IR group was partially recovered, and DZ+IR group was recovered like the NC group on Day 21. In the case of the first-day endometrium, the IR group was thin and the boundary was cloudy, and the DZ+IR group was thicker and the boundary was clearer than the IR group. Day 21 IR group still did not recover, and DZ+IR group recovered like NC group. This is believed to have radiation protection effects in the blood cells and small intestine and uterus of the irradiated female SD Rat, and is expected to be useful for the study of natural radiation protection materials.