• Title/Summary/Keyword: Radiation Pipe

Search Result 76, Processing Time 0.024 seconds

A Study on the Radiated Noise the Prediction in the Pipe by Fluid Induced Vibration using the Radiation Efficiency and Pipe Surface Vibration (배관 표면진동과 방사효율을 이용한 배관 소음예측기법 연구)

  • Yi, Jongju;Park, Kyunghoon;Jung, Woojin;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.763-769
    • /
    • 2014
  • This study is on the experiment and prediction of the pipe noise due to the internal fluid. The vibration of pipe external surface and noise in air were measured according to the internal fluid velocity and pipe type. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The 900 mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the method using the pipe surface vibration and radiation efficiency shows good agreement with experimental result.

Surface Temperature Control of an Insulated Horizontal Pipe under Thermal Radiation Environment (복사효과를 포함하는 수평관 표면의 온도제어)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • Procedures for estimation of insulation thickness for a horizontal pipe for condensation control or personnel protection has been investigated, parallel to the previous work of a vertical wall case. Parameters include pipe diameter, emissivity, thermal conductivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation, specially for the case of high temperature application with low Bi. The effect of surface radiation in such case could be up to 65% of the total. Required insulation thickness for the surface temperature control increases as pipe diameter increases and as surface emissivity decreases. Adequate revision of specifications or standards to include newly invented insulation materials with high emissivity has been also suggested.

A study on the Prediction of the Radiated Noise by Fluid Induced Vibration in the pipe (배관의 표면진동을 이용한 소음예측기법 연구)

  • Yi, Jongju;Pak, Kyunghyon;Jung, Woojin;Seo, Youngsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.609-614
    • /
    • 2014
  • This study is on the experiment of the pipe noise due to the internal fluid. The straight pipe, the $90^{\circ}$ mitred pipe, rounded $90^{\circ}$ and $1350^{\circ}$ pipe were tested and measured the vibration and noise. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The $90^{\circ}$ mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the use of pipe surface vibration and radiation efficiency shows good agreement with experiment result.

  • PDF

Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss (비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석)

  • ;;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

Finite Element Simulation of a Porthole Die Extrusion Process for Manufacturing Aluminum Heat Radiation Pipe (알루미늄 방열 파이프의 생산 목적의 포트홀 금형 압출공정의 유한요소해석)

  • Lee, M.C.;Cho, J.H.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.458-461
    • /
    • 2008
  • We carry out non-steady state finite element simulation of a porthole extrusion process for manufacturing a radiation pipe under isothermal assumption. It is assumed that welding takes place at the moment that the material contacts the plane of symmetry. Welding phenomena are revealed by observing the contacting mechanism of the material passed through the portholes. It is emphasized that mesh density control and intelligent remeshing during welding process govern the solution accuracy and the program applicability. AFDEX 3D is employed.

  • PDF

An Experimental Study on the Heat Transfer Characteristics for a Flat Plate Solar Collector with a Heat Pipe (열파이프가 부착된 평판형 태양열 집열기의 열전달 특성에 대한 실험적 고찰)

  • 김철주;임광빈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1237-1245
    • /
    • 1993
  • In this study, a model of a flat plate solar collector using a heat pipe was manufactured and tested to investigate such operational characteristics of the present system of solar collector as start-up process, temperature distribution on the absorber plate and operation of the heat pipe. Moreover, collector efficiency was measured for 20-30 minutes of operation at various conditions of weather and the result was compared with that tested by Hill et. a. for a flat plate solar collector using direct circulation of coolant. Some results obtained in this study could be summarized as follows. (1) The required time for the initial start-up process was about 5-6 minutes, but the heat pipe began to operate as soon as the absorber plate was exposed to solar radiation. (2) On the absorber plate, the temperature distributions in axial direction maintained nearly constant, while temperature distributions in transversal direction showed smooth decrease with $3-5^{\cird}C$ along with solar radiation. (3) Thermal inertia of the collector system had a favorable effect to damp the turbulent variation of solar radiation. (4) The collector efficiency of the present system showed nearly the same tendency but a decrease of about 10% compared with that using direct circulation of coolant.

Damping due to Radiation Loss for Axial Vibration of the Pipe in a Fluid-filled Borehole (유체로 채워진 보어홀 속의 파이프 종진동에 있어서 방사손실에 의한 감쇠)

  • 이현엽;류황진
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.631-636
    • /
    • 1997
  • A method to estimate the radiatio power to the surrounding formation due to axial vibration of the pipe in a fluid-filled borehole has been developed, by using the propagation modes of stress wave in an infinitely-long and uniform drilling borehole surrounded by a radially-infinite homogeneous formation. Also, the equivalent damping coefficient for the axial vibration of the pipe has been derived. As an example, results for a real drilling borehole has been presented. The analysis of the elastic motion of the infinite formation which has cylidrical cavity is simplified with the geometric axisymmetry and the low-frequency assumption so that the analytic solution is obtained.

  • PDF

Effects of surface radiation on the insulation for mechanical system (표면복사특성이 단열성능에 미치는 영향)

  • Oh, Dong-Eun;Park, Jong-Il;Lee, Min-Woo;Hong, Jin-Kwan;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1006-1011
    • /
    • 2006
  • In this study, a rational procedures for estimation of insulation thickness for condensation control or personnel protection has been investigated. Both horizontal pipe and vertical wall configuration are included. Design parameters are pipe diameter or, height of the wall, thermal conductivity, emissivity, and operating temperatures. The results Indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient. Adequate revision of specifications or standards has been also suggested.

  • PDF

A Simulation for the Characteristics of the Sound-Pipe of King Song-Dok Bell (시뮬레이션에 의한 성덕대왕 신종 음관의 특성)

  • Choi Myung-Jin;Park Hong-Eul
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.69-76
    • /
    • 2005
  • To investigate the characteristics of the sound-pipe on the top of King Song-Dok bell, using computer simulation, the throat impedance was evaluated for the straight pipe and conical pipes with varying taper angles. When sound propagates in a rigid walled, unflanged circular pipe with wavelength larger than radius, the acoustic motion is planar, much as in a bar. The incident sound waves are reflected at the end of pipe and some of them are transmitted. The reflection coefficient and radiation impedance of the sound-pipe of King Song-Dok bell were calculated, and the results demonstrated that the high frequency sound is radiated through the sound-pipe. It behaves like a frequency filter.

  • PDF

Diagnosis of the Liquid Transportation Pipe in the Petroleum Industry using Sealed Gamma-ray Source(137Cs) (밀봉감마선원(137Cs)을 이용한 석유화학산업의 유체이송배관 내 가동 중 이상 진단기술)

  • Kim, Jin-Seop;Jung, Sung-Hee;Kim, Jong-Bum
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.794-799
    • /
    • 2005
  • With the quantitative growth of the petroleum industry, the pipe facilities that connect each process increased significantly and the corresponding maintenance and repair costs of the pipe facilities increased as well. The diagnosis techniques to check a pipe efficiency while in operation are few in Korea, but in the advanced countries the pipe diagnosis using gramma-ray source was on-going research since 1960's. In this study, field experiments were performed to analyze the reasons for abnormal operation of the pipe connected to a distillation tower, and the degree of abnormality was estimated using a sealed gamma-ray source ($^{137}Cs$). Gamma radiation counts were measured by a detector (NaI) positioned outside the pipe-wall diametrically opposite to the gamma source. The results showed that a gas zone section's distribution pattern was different from the pattern of nearby fluid in a pipe. Th diagnosis technique using a gamma radiation source was proved to be an effective and reliable method, offering the information on the fluid distribution in pipe.