• Title/Summary/Keyword: Radiation Heat Flux

Search Result 249, Processing Time 0.025 seconds

An Experimental Study on the Applicability of Plate Thermometer in Steady and Unsteady-State Fire Conditions (정상 및 비정상상태의 화재조건에서 판형 열유속계의 적용성에 관한 실험적 연구)

  • Yun, Hong-Seok;Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.34-41
    • /
    • 2015
  • The applicability of plate thermometer (PT), which feature simple installation and low cost, was experimentally examined in steady and unsteady-state fire conditions. An infrared radiation heater and a square burner with C3H8 as fuel were used as heat sources. The relative measurement accuracy of the PT was evaluated by comparing measurements made using a Gardon-type heat flux meter. From a practical point of view and in terms of measurement accuracy, the optimal size and thickness of the PT in steady and unsteady-state fire conditions were 100 mm and 0.6 mm, respectively. These results can be explained by the conductive heat losses and thermal inertia of the PT for different sizes and thicknesses. It can be also concluded that measurements of heat flux using the PT in conditions of faster fire growth rate than slow require considerable attention.

A Study on the Inverse Radiation Analysis in a Cylindrical Enclosure (원통형상에서의 역복사 해석에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1516-1521
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy.

  • PDF

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

Atmospheric and Oceanic Factors Affecting the Air-Sea Thermal Interactions in the East Sea (Japan Sea) (東海海面 熱交換에 影響을 미치는 大氣 및 海洋的 要因)

  • Kang, Yong Q
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.163-171
    • /
    • 1984
  • The atmospheric and oceanic influences on the air-sea thermal interaction in the East Sea (Japan Sea) are studied by means of an analytic model which is based on the heat budget of the ocean. By means of the model, the model, the annual variations of heat fluxes and air temperatures in the East Sea are analytically simulated. The model shows that the back radiation, the latent heat and the sensible heat increase with the warn water advection. The latent heat increases with the sea surface temperature (SST) but the back radiation and the sensible heat dcrease as the SST increases. In the East Sea, an increase of mean SST by 1.0$^{\circ}C$ yields an increase of mean air temperature by 1.2$^{\circ}C$. The heat storage in the ocean plays an important role in the annual variations of heat flux across the sea surface.

  • PDF

Future Changes in Surface Radiation and Cloud Amount over East Asia under RCP Scenarios (RCP 시나리오에 따른 미래 동아시아 지표복사에너지와 운량 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Shim, Sungbo;Byun, Youngwha
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.433-442
    • /
    • 2016
  • In this study, we examine future changes in surface radiation associated with cloud amount and aerosol emission over East Asia. Data in this study is HadGEM2-CC (Hadley Centre Global Environmental Model version 2, Carbon Cycle) simulations of the Representative Concentration Pathways (RCPs) 2.6/4.5/8.5. Results show that temperature and precipitation increase with rising of the atmosphere $CO_2$. At the end of $21^{st}$ century (2070~2099) relative to the end of $20^{st}$ century (1981~2005), changes in temperature and precipitation rate are expected to increase by $+1.85^{\circ}C/+6.6%$ for RCP2.6, $+3.09^{\circ}C/+8.5%$ for RCP4.5, $+5.49^{\circ}C/10%$ for RCP8.5. The warming results from increasing Net Down Surface Long Wave Radiation Flux (LW) and Net Down Surface Short Wave Radiation Flux (SW) as well. SW change increases mainly from reduced total Aerosol Optical Depth (AOD) and low-level cloud amount. LW change is associated with increasing of atmospheric $CO_2$ and total cloud amount, since increasing cloud amounts are related to absorb LW radiation and remit the energy toward the surface. The enhancement of precipitation is attributed by increasing of high-level cloud amount. Such climate conditions are favorable for vegetation growth and extension. Expansion of C3 grass and shrub is distinct over East Asia, inducing large latent heat flux increment.

Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data (해양부이 자료를 이용한 황해 남동부 해역 표층 열속 산출)

  • Kim, Sun-Bok;Chang, Kyung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.169-179
    • /
    • 2014
  • Monthly mean surface heat fluxes in the southeastern Yellow Sea are calculated using directly observed airsea variables from an ocean buoy station including short- and longwave radiations, and COARE 3.0 bulk flux algorithm. The calculated monthly mean heat fluxes are then compared with previous estimates of climatological monthly mean surface heat fluxes near the buoy location. Sea surface receives heat through net shortwave radiation ($Q_i$) and loses heat as net longwave radiation ($Q_b$), sensible heat flux ($Q_h$), and latent heat flux ($Q_e$). $Q_e$ is the largest contribution to the total heat loss of about 51 %, and $Q_b$ and $Q_h$ account for 34% and 15% of the total heat loss, respectively. Net heat flux ($Q_n$) shows maximum in May ($191.4W/m^2$) when $Q_i$ shows its annual maximum, and minimum in December ($-264.9W/m^2$) when the heat loss terms show their annual minimum values. Annual mean $Q_n$ is estimated to be $1.9W/m^2$, which is negligibly small considering instrument errors (maximum of ${\pm}19.7W/m^2$). In the previous estimates, summertime incoming radiations ($Q_i$) are underestimated by about $10{\sim}40W/m^2$, and wintertime heat losses due to $Q_e$ and $Q_h$ are overestimated by about $50W/m^2$ and $30{\sim}70W/m^2$, respectively. Consequently, as compared to $Q_n$ from the present study, the amount of net heat gain during the period of net oceanic heat gain between April and August is underestimated, while the ocean's net heat loss in winter is overestimated in other studies. The difference in $Q_n$ is as large as $70{\sim}130W/m^2$ in December and January. Analysis of long-term reanalysis product (MERRA) indicates that the difference in the monthly mean heat fluxes between the present and previous studies is not due to the temporal variability of fluxes but due to inaccurate data used for the calculation of the heat fluxes. This study suggests that caution should be exercised in using the climatological monthly mean surface heat fluxes documented previously for various research and numerical modeling purposes.

Combustion Characteristics of Spruce Wood by Pressure Impregnation with Waterglass and Carbon Dioxide (물유리와 이산화탄소로 가압함침한 가문비 나무의 연소특성)

  • Park, Hyung-Ju;Lee, Se-Myeoung
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.18-23
    • /
    • 2012
  • After produce the extracted wood to silicic acid gel, sodium carbonate and silicon dioxide with application of the making method for carbon dioxide, ignition time, ignition temperature, mass loss rate and critical heat flux are measured according to external radiation source (20, 25, 35 and 50 $kW/m^2$). From the results, pressure impregnation wood to use with water glass and carbon dioxide has fire retardant performance at heat flux (less than 20 $kW/m^2$) of Pre-Flashover fires. If we find out the excellent maxing ratio through continuously study, it might be decided to be able to be utilized as fire-retardant wood.

Influence of Radiant Heat Flux on Combustion Properties of Flame Retardant Cable (케이블의 난연성능에 따른 복사 열유속이 연소물성에 미치는 영향)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2019
  • The combustion properties required for fire simulations of multi-layer, multi-component flame retardant cables were measured using a cone calorimeter. The CO and soot yields combustion efficiencies of the flame retardant cables were investigated. TFR-8 (flame retardant PCV and XLPE added), TFR-CVV-SB (flame retardant PCV and general PVC), and VCTF, which are excellent in the flame retardancy of cables, were considered. As the main result, the CO yield (yCO) of the TFR-8 and TFR-CVV-SB flame retardant cables increased by 23% and 16%, respectively, with increasing incident radiation heat flux from 25 kW/㎡ to 50 kW/㎡. On the other hand, the CO yield of VCTF was not influenced significantly by the changes in radiant heat flux. Finally, the soot yield and combustion efficiency increased as the sheath material (flame retardant performance) was strengthened. Therefore, in a fire environment where various heat fluxes coexist, attention should be paid to the top of the application of the combustion property of the flame retardant cable.

A Combustion Characteristic Analysis of Quercus Variabilis and Pinus Densiflora Fallen Leaves Using Radiation Heat Flux (복사열을 이용한 소나무와 굴참나무 낙엽의 연소특성 분석)

  • Park, Hyung-Ju;Kim, Eung-Sik;Kim, Jang-Hwan;Kim, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The combustion characteristics of surface forest fire fuels was analysed using variable external irradiation level. The characteristics such as ignition time, ignition temperature, critical heat flux and mass loss rate were measured. Fuel samples were exposed to incident heat fluxes from 8 to $50\;kW/m^2$. For the measurement of various combustion characteristics, the size of specimen holder was $100\;mm{\times}100\;mm{\times}12\;mm$ and the fuel samples grinded by electric mill were the fallen leaves of Quercus variabilis and Pinus densiflora. As results, the occurrence of ignition is possible to the heat flux more than $9\;kW/m^2$. The fuel of Pinus densiflora keeps its high temperature longer than that of Quercus variabilis during the combustion process. The results of measurement shows that the maximun and average mass loss rate of Quercus variabilis larger than that of Pinus densiflora.

A Study on Retrieval of Storage Heat Flux in Urban Area (우리나라 도심지에서의 저장열 산출에 관한 연구)

  • Lee, Darae;Kim, Honghee;Lee, Sang-Hyun;Lee, Doo-Il;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Lee, Kyeong-sang;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.301-306
    • /
    • 2018
  • Urbanization causes urban floods and urban heat island in the summer, so it is necessary to understanding the changes of the thermal environment through urban climate and energy balance. This can be explained by the energy balance, but in urban areas, unlike the typical energy balance, the storage heat flux saved in the building or artificial land cover should be considered. Since the environment of each city is different, there is a difficulty in applying the method of retrieving the storage heat flux of the previous research. Especially, most of the previous studies are focused on the overseas cities, so it is necessary to study the storage heat retrieval suitable for various land cover and building characteristics of the urban areas in Korea. Therefore, the object of this study, it is to derive the regression formula which can quantitatively retrieve the storage heat using the data of the area where various surface types exist. To this end, nonlinear regression analysis was performed using net radiation and surface temperature data as independent variables and flux tower based storage heat estimates as dependent variables. The retrieved regression coefficients were applied to each independent variable to derive the storage heat retrieval regression formula. As a result of time series analysis with flux tower based storage heat estimates, it was well simulated high peak at day time and the value at night. Moreover storage heat retrieved in this study was possible continuous retrieval than flux tower based storage heat estimates. As a result of scatter plot analysis, accuracy of retrieved storage heat was found to be significant at $50.14Wm^{-2}$ and bias $-0.94Wm^{-2}$.