• Title/Summary/Keyword: Radiation Generator

Search Result 236, Processing Time 0.024 seconds

Testing and Analysis of Tube Voltage and Tube Current in The Radiation Generator for Mammography (유방촬영용 방사선발생장치의 관전압과 관전류 시험 분석)

  • Jung, Hong-Ryang;Hong, Dong-Hee;Han, Beom-Hui
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Breast shooting performance management and quality control of the generator is applied to the amount of current IEC(International Electrotechnical Commission) 60601-2-45 tube voltage and tube current are based on standards that were proposed in the analysis of the test results were as follows. Tube voltage according to the value of the standard deviation by year of manufacture from 2001 to 2010 as a 42-3.15 showed the most significant, according to the year of manufacture by tube amperage value of the standard deviation to 6.38 in the pre-2000 showed the most significant, manufactured after 2011 the standard deviation of the devices, the PAE(Percent Average Error) was relatively low. This latest generation device was manufactured in the breast of the tube voltage and tube diagnosed shooting the correct amount of current to maintain the performance that can be seen. The results of this study as the basis for radiography diagnosed breast caused by using the device's performance and maintain quality control, so the current Food and Drug Administration "about the safety of diagnostic radiation generator rule" specified in the test cycle during three years of self-inspection radiation on a radiation generating device ensure safety and performance of the device using a coherent X-ray(constancy) by two ultimately able to keep the radiation dose to the public to reduce the expected effect is expected.

Analysis of the Spatial Dose Rates According to the Type of Radiation Source Used in Multi-bed Hospital Room (다인병실에서 이용되는 방사선원의 종류에 따른 공간선량률 분석)

  • Jang, Dong-Gun;Kim, Junghoon;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.407-413
    • /
    • 2017
  • Medical radiation offers significant benefits in diagnosing and treating patients, but it also generates unnecessary radiation exposure to those nearby. Accordingly, the objective of the present study was to analyze spatial dose rate according to types of radiation source term in multi-bed hospital rooms occupied by patients and general public. MCNPX was used for geometric simulation of multi-bed hospital rooms and radiation source terms, while the radiation source terms were established as whole body bone scan patients and imaging using a portable X-ray generator. The results of simulation on whole body bone scan patients showed $3.46{\mu}Sv/hr$ to another patient position, while experimental results on imaging using a portable X-ray generator showed $1.47{\times}10^{-8}{\mu}Sv/irradiation$ to another patient position in chest imaging and $2.97{\times}10^{-8}{\mu}Sv/irradiation$ to another patient position in abdomen imaging. Multi-bed hospital room, unnecessary radiation generated in the surrounding patients, while legal regulations and systematic measures are needed for radiation exposure in multi-bed hospital rooms that are currently lacking in Korea.

Performance Prediction of a Solar Power System with Stirling Engine (Matching Collector/Receiver with Engine/Generator Systems) (스털링엔진 태양열 발전시스템의 성능예측(집열기.수열기 및 엔진.발전기 시스템의 조화))

  • Bae, Myung-Whan;Chang, Hyung-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.794-799
    • /
    • 2001
  • The simulation analyses of a solar power system with monolithic concentrator by using a stirling engine are carried out to predict the system performance in four test sites. The site has different intensities and distributions of direct solar radiation respectively. Seoul, Pusan and Cheju in Korea, and Naha in Japan are selected as test sites. To accomplish the same demand of a 25 kW output that the power level of a system has, it needs to take the matching of collector/receiver with engine/generator systems. In such a case, also, the size of the collector is sometimes adjusted. In this study, the diameter of the collector is decided by using the solar radiation of design point, which is defined as the sum of average and standard deviation $\sigma$ of maximum direct solar radiation distribution for a day during a year in the respective test site. It is found that the average power output during the system operating time in the case of slope error ${\sigma}_s=2.5$ is within the range of 9 to 13 kW.

  • PDF

Reference X-ray Irradiation System for Personal Dosimeter Testing and Calibration of Radiation Detector

  • Lee, Seung Kyu;Chang, Insu;Kim, Sang In;Lee, Jungil;Kim, Hyoungtaek;Kim, Jang-Lyul;Kim, Min Chae
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.72-78
    • /
    • 2019
  • Background: In the calibration and testing laboratory of Korea Atomic Energy Research Institute, the old X-ray generator used for the production of reference X-ray fields was replaced with a new one. For this newly installed X-ray irradiation system, beam alignment as well as the verification of beam qualities was conducted. Materials and Methods: The existing X-ray generator, Phillips MG325, was replaced with YXLON Y.TU 320-D03 in order to generate reference X-ray fields. Theoretical calculations and Monte Carlo simulations were used to determine initial filter thickness. Beam alignment was performed in three steps to deliver a homogeneous radiation dosage to the target at different distances. Finally, the half-value layers were measured for different X-ray fields to verify beam qualities by using an ion chamber. Results and Discussion: Beam alignment was performed in three steps, and collimators and other components were arranged to maintain the uniformity of the mean air kerma rate within ${\pm}2.5%$ at the effective beam diameter of 28 cm. The beam quality was verified by using half-value layer measurement methods specified by American National Standard Institute (ANSI) N13.11-2009 and International Organization for Standardization (ISO)-4037. For each of the nine beams than can be generated by the new X-ray irradiation system, air kerma rates for X-ray fields of different beam qualifies were measured. The results showed that each air kerma rate and homogeneity coefficient of the first and second half-value layers were within ${\pm}5%$ of the recommended values in the standard documents. Conclusion: The results showed that the new X-ray irradiation system provides beam qualities that are as high as moderate beam qualities offered by National Institute of Standards and Technology in ANSI N13.11-2009 and those for narrow-spectrum series of ISO-4037.

A Study of Gamma-ray Distribution around the $^{99}Mo-^{99m}TcO_4$ Generator ($^{99}Mo-^{99m}TcO_4$ Generator의 감마선량 분포에 관한 연구)

  • Park, Soung-Ock
    • Journal of radiological science and technology
    • /
    • v.24 no.1
    • /
    • pp.49-53
    • /
    • 2001
  • A number of radionuclides of interest in nuclear medicine are short lived isotopes that emit only gamma ray. The most of all Dept. of Nuclear Medicine in the hospt. are using the $^{99}Mo-^{99m}Tc$ generator for elution of the short lived isotope $^{99m}TcO_4$. A $^{99}Mo-^{99m}Tc$ generator consists of an alumina column on which $^{99}Mo$ is bound. The parent isotope($^{99}Mo$ : half life 67 hr.) decays to its daughter $^{99m}TcO_4^-$ which is a different element with a shorter half-life. $^{99}Mo$ emitted 41-keV(1.3%), 141-keV(5.6%) 181-keV(6.6%) and 366-keV(1.5%) gamma rays. But $^{99m}TcO_4$ emitted only 140-keV gamma ray. We study about the gamma ray distribution around the $^{99}Mo$ generator. And obtained the result as follows ; 1. Total counted gamma ray from generator smaller in front side than back. 2. The gamma ray emitted from $^{99}Mo$ generator without $^{99m}TcO_4$ vial increased in the back side(Mo column posited side) 3. The gamma ray only from the $^{99m}TcO_4$ vial increased in the front side. 4. Apron can protect gamma ray above 60% of total radiation from the $^{99}Mo$ generator.

  • PDF

The Radiation Safety Management in the Animal Hospital Using Inspection Standard of Diagnosis Radiation System (진단용 방사선발생장치의 검사기준을 적용한 동물병원의 방사선 안전관리)

  • Kim, Sang-Woo;Rhim, Jea-Dong;Han, Dong-Kyoon;Seoung, Youl-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • The purpose of this study was to investigate the actual conditions of radiation safety supervision in animal clinics using inspection standard of X-ray generator for diagnosis. The surveys for inspection standard system, equipment condition, and safety supervision were carried out in 18 animal clinics randomly. The inspection standard included reproducibility of dose exposure, kVp, mAs, collimator accuracy test, collimator luminance test, X-ray view box luminance test, grounding system equipment test and external leakage current test. The surveys of equipment condition and safety supervision used one-on-one interview with 5 points measurement. As a result, 44.44% of reproducibility of dose exposure was proper, 81.25% of kVp test was good, and 100% of mAs test was appropriate. Also, 66.66% of collimator accuracy test was proper, 61.11% of collimator luminance test was good, 53.13% of X-ray view box luminance test was suitable. In addition, only 5.55% of grounding system equipment and ground resistance was proper, 63.64% of external leakage current test was appropriate in grounding system equipment test. The 100mA electric capacity of X-ray generator for diagnosis was popular with 44.44%, and its 55.56% was purchased used equipment. Monthly average of less than 50 times (61.11%) was top frequency in use, and no animal clinic had a thermo-luminescence dosimeter(TLD). The 16 animal clinics with radiation safety zone and 2 without radiation safety zone were appeared.

Gaussian process approach for dose mapping in radiation fields

  • Khuwaileh, Bassam A.;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1807-1816
    • /
    • 2020
  • In this work, a Gaussian Process (Kriging) approach is proposed to provide efficient dose mapping for complex radiation fields using limited number of responses. Given a few response measurements (or simulation data points), the proposed approach can help the analyst in completing a map of the radiation dose field with a 95% confidence interval, efficiently. Two case studies are used to validate the proposed approach. The First case study is based on experimental dose measurements to build the dose map in a radiation field induced by a D-D neutron generator. The second, is a simulation case study where the proposed approach is used to mimic Monte Carlo dose predictions in the radiation field using a limited number of MCNP simulations. Given the low computational cost of constructing Gaussian Process (GP) models, results indicate that the GP model can reasonably map the dose in the radiation field given a limited number of data measurements. Both case studies are performed on the nuclear engineering radiation laboratories at the University of Sharjah.

A Study on Optimizing Energy Transfer of Capacitive Switching Antenna (Capacitive Switching Antenna의 최적 에너지 전달에 관한 연구)

  • Kim, Jin-Man;Bang, Jeong-Ju;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • In this paper we describe the maximum energy transfer of CSA(Capacitive Switching Antenna). CSA which is radiated antenna system contain energy storage and switch, antenna needs to high voltage source for electrical field radiation experiment. In this experiment we employed Marx generator as a charging source. CSA can radiate electrical field more efficiently by varying antenna capacitance. The electromagnetic generation system which was using CSA has some advantages which are more simple and more effective compared to exist system. We evaluated the performance of electromagnetic wave generating system using CSA. As a result UWB gain of system is 0.47, It is higher level than exist system is 0.3. Radiated electrical field strength at 1m is 70kV/m. It is measured by D-dot sensor and gap distance is 20mm. Center frequency of CSA is approximately 25MHz. When vary the antenna gap distance from 50mm to 20mm, we can find the radiation field strength is decrease and antenna center frequency is increased. We also simulated the energy transfer efficiency to compare with experiment result. Consequentially, CSA needs to appropriate capacitance which is similar value from marx generator for maximum energy transfer, and gap is less than 1mm to increase the CSA capacitance.

A Study on the Measurement Linearity of Photoluminescent Dosimeter (형광유리선량계의 계측 직선성 연구)

  • Jeong, Kyeong-Hwan;Jung, Dong-Kyung;Seo, Jeong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.841-847
    • /
    • 2021
  • Related institutions that use radiation are diverse in Korea, such as research, medical care, and education. Recently, the number of examinations and visits to medical institutions is increasing. As a result, the number of radiological examinations in medical institutions is increasing. Radiation safety management is necessary as well as exposure of radiation workers. For safety management, first of all, it is necessary to wear the personal exposure dosimeter correctly and measure it accurately after wearing it. This study tries to evaluate and verify the measurement straightness of PLD devices by radiation of a diagnostic generator. Radiation division irradiation time interval was measured after irradiating 10 times at 10, 30, and 60 sec and irradiating the irradiation distance from 30 to 100 cm at 10 cm intervals to measure the change in absorbed dose depending on the distance. As a result, there was no difference in absorbed dose by time interval. This is considered to be helpful in various studies by using a diagnostic generator for the study of high absorbed dose.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF