DOI QR코드

DOI QR Code

Gaussian process approach for dose mapping in radiation fields

  • Khuwaileh, Bassam A. (Department of Mechanical and Nuclear Engineering, University of Sharjah) ;
  • Metwally, Walid A. (Department of Mechanical and Nuclear Engineering, University of Sharjah)
  • Received : 2019.07.17
  • Accepted : 2020.01.13
  • Published : 2020.08.25

Abstract

In this work, a Gaussian Process (Kriging) approach is proposed to provide efficient dose mapping for complex radiation fields using limited number of responses. Given a few response measurements (or simulation data points), the proposed approach can help the analyst in completing a map of the radiation dose field with a 95% confidence interval, efficiently. Two case studies are used to validate the proposed approach. The First case study is based on experimental dose measurements to build the dose map in a radiation field induced by a D-D neutron generator. The second, is a simulation case study where the proposed approach is used to mimic Monte Carlo dose predictions in the radiation field using a limited number of MCNP simulations. Given the low computational cost of constructing Gaussian Process (GP) models, results indicate that the GP model can reasonably map the dose in the radiation field given a limited number of data measurements. Both case studies are performed on the nuclear engineering radiation laboratories at the University of Sharjah.

Keywords

References

  1. FANR, Basic Safety Standards for Facilities and Activities Involving Ionizing Radiation Other than in Nuclear Facilities, UAE, 2014. FANR-REG-24, Version 1.
  2. IAEA. Occupational Radiation Protection, IAEA Safety Standards Series, Vienna, 1999. RS-G-1.1.
  3. X. Zhang, R. Srinivasan, GIS-based spatial precipitation estimation: a comparison of geostatistical approaches 1, JAWRA J. Am. Water Resour. Assoc. 45 (4) (2009 Aug) 894-906. https://doi.org/10.1111/j.1752-1688.2009.00335.x
  4. L. Pesquer, A. Cortes, X. Pons, Parallel ordinary kriging interpolation incorporating automatic variogram fitting, Comput. Geosci. 37 (4) (2011 Apr 1) 464-473. https://doi.org/10.1016/j.cageo.2010.10.010
  5. J. Aalto, P. Pirinen, J. Heikkinen, A. Venalainen, Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models, Theor. Appl. Climatol. 112 (1-2) (2013 Apr 1) 99-111. https://doi.org/10.1007/s00704-012-0716-9
  6. Z. Wang, J. Cai, Reconstruction of the neutron radiation field on nuclear facilities near the shield using Bayesian inference, Prog. Nucl. Energy 118 (2020 Jan 1) 103070. https://doi.org/10.1016/j.pnucene.2019.103070
  7. J.J. Lee, C.S. Jang, S.W. Wang, C.W. Liu, Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model, Sci. Total Environ. 384 (1-3) (2007 Oct 1) 151-162. https://doi.org/10.1016/j.scitotenv.2007.06.021
  8. G. Dubois, J. Malczewski, M. De Cort, in: Mapping Radioactivity in the Environment: Spatial Interpolation Comparison 97, Office for Official Publications of the European Communities, 2003.
  9. G. Dubois, in: Automatic Mapping Algorithms for Routine and Emergency Monitoring Data: Spatial Interpolation Comparison 2004, EUR-OP, 2005.
  10. G. Dubois, S. Galmarini, Introduction to the spatial interpolation comparison (SIC) 2004 exercise and presentation of the datasets, Appl. GIS 1 (2) (2005), 9-1.
  11. P.H. Hiemstra, E.J. Pebesma, C.J. Twenhofel, G.B. Heuvelink, Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network, Comput. Geosci. 35 (8) (2009 Aug 1) 1711-1721. https://doi.org/10.1016/j.cageo.2008.10.011
  12. B.A. Khuwaileh, P.J. Turinsky, Surrogate based model calibration for pressurized water reactor physics calculations, Nucl. Eng. Technol. 49 (6) (2017 Sep 1) 1219-1225. https://doi.org/10.1016/j.net.2017.08.007
  13. K.D. Coleman, A. Lewis, R.C. Smith, B. Williams, M. Morris, B. Khuwaileh, Gradient-free construction of active subspaces for dimension reduction in complex models with applications to neutronics, SIAM/ASA J. Uncertain. Quantification 7 (1) (2019 Jan 17) 117-142. https://doi.org/10.1137/16M1075119
  14. Thomas P. Ryan, Modern Regression Methods, John Wiley & Sons, 2008.
  15. Agnar H€oskuldsson, PLS regression methods, J. Chemom. 2 (3) (1988) 211-228. https://doi.org/10.1002/cem.1180020306
  16. Raymond H. Myers, et al., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, New York, 1995.
  17. D.J. Lucia, P.S. Beran, W.A. Silva, Reduced-order modeling: new approaches for computational physics, Prog. Aerosp. Sci. 40 (1-2) (2004 Feb 1) 51-117. https://doi.org/10.1016/j.paerosci.2003.12.001
  18. N. Halko, P.G. Martinsson, J.A. Tropp, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev. 53 (2) (2011 May 5) 217-288. https://doi.org/10.1137/090771806
  19. P.G. Constantine, E. Dow, Q. Wang, Active subspace methods in theory and practice: applications to kriging surfaces, SIAM J. Sci. Comput. 36 (4) (2014 Jul 24) A1500-A1524. https://doi.org/10.1137/130916138
  20. B.M. Adams, K. Coleman, L.N. Gilkey, N. Gordon, R. Hooper, B.A. Khuwaileh, A. Lewis, K. Maupin, R.C. Smith, L.P. Swiler, P.J. Turinsky, User Guidelines and Best Practices for CASL VUQ Analysis Using Dakota, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2017 Oct.
  21. C.E. Rasmussen, C.K. Williams, Gaussian Processes for Machine Learning, vol. 38, The MIT Press, Cambridge, MA, USA, 2006, pp. 715-719, 2006.
  22. Walid A. Metwally, Samar El-Sayed, Ababneh Ahmad, et al., Flux measurements for a DD neutron generator using neutron activation analysis[J], Nucl. Sci. Tech. 29 (4) (2018) 52. https://doi.org/10.1007/s41365-018-0385-1
  23. W.A. Metwally, O.A. Taqatqa, M.M. Ballaith, A.X. Chen, M.A. Piestrup, Neutron and photon dose mapping of a DD neutron generator, Radiat. Prot. Dosim. 176 (3) (2017 Feb 16) 258-263. https://doi.org/10.1093/rpd/ncx004
  24. MathWorks documentation: fit a Gaussian process regression (GPR) model, Available from: https://www.mathworks.com/help/stats/fitrgp.html, 01 July 2019.
  25. R. Martinez-Cantin, Bayesopt, A bayesian optimization library for nonlinear optimization, experimental design and bandits, J. Mach. Learn. Res. 15 (1) (2014 Jan 1) 3735-3739.
  26. B.M. Adams, K. Coleman, L.N. Gilkey, N. Gordon, R. Hooper, B.A. Khuwaileh, A. Lewis, K. Maupin, R.C. Smith, L.P. Swiler, P.J. Turinsky, User Guidelines and Best Practices for CASL VUQ Analysis Using Dakota, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2017 Oct 4.
  27. R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, Siam, 2013 Dec 2.
  28. Los Alamos National Laboratory (LANL), MCNP: A General Monte Carlo NParticle Transport Code, 2003. Oak Ridge, TN, United States. LA-UR-03-1987, Version 5.1.

Cited by

  1. Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-93474-4