• Title/Summary/Keyword: Radiation Emission

Search Result 557, Processing Time 0.023 seconds

Hot Gas Analysis of Circuit Breakers By Combining Partial Characteristic Method with Net Emission Coefficient

  • Park, Sang-Hun;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.115-121
    • /
    • 2003
  • This paper proposes a radiation model, which considers radiation transport as an important component in hot gas analysis. This radiation model is derived from combining the method of partial characteristics (MPC) with net emission coefficient (NEC), and it covers the drawbacks of existing models. Subsequently, using this proposed model, the arc-flow interaction in an arcing chamber can be efficiently computed. The arc is represented as an energy source term composed of ohmic heating and the radiation transport in the energy conservation equation. Ohmic heating term was computed by the electric field analysis within the conducting plasma region. Radiation transport was calculated by the proposed radiation model. Also, in this paper, radiation models were introduced and applied to the gas circuit breaker (GCB) model. Through simulation results, the efficiency of the proposed model was confirmed.

The Effect of Flame Radiation on NOx Emission Characteristic in Hydrogen Turbulent Diffusion Flames (수소 난류확산화염에서 NOx 생성특성에 대한 복사분율의 영향)

  • Kim, Seung-Han;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.47-58
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the l/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

Radiation mechanism of gamma-ray burst prompt emission

  • Uhm, Z. Lucas;Zhang, Bing
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.3-50
    • /
    • 2015
  • Synchrotron radiation of relativistic electrons is an important radiation mechanism in many astrophysical sources. In the sources where the synchrotron cooling timescale is shorter than the dynamical timescale, electrons are cooled down below the minimum injection energy. It has been believed that such fast-cooling electrons have a power-law distribution in energy with an index -2, and their synchrotron radiation has a photon spectral index -1.5. On the other hand, in a transient expanding astrophysical source, such as a gamma-ray burst (GRB), the magnetic field strength in the emission region continuously decreases with radius. Here we study such a system, and find that in a certain parameter regime, the fast-cooling electrons can have a harder energy spectrum. We apply this new physical regime to GRBs, and suggest that the GRB prompt emission spectra whose low-energy photon spectral index has a typical value -1 could be due to synchrotron radiation in this moderately fast-cooling regime.

  • PDF

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Development of Zygotic Embryos and Seedlings is Affected by Radiation Spectral Compositions from Light Emitting Diode (LED) System in Chestnut (Castanea crenata S. et Z.)

  • Park, So-Young;Kim, Man-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.750-754
    • /
    • 2010
  • Among the environmental conditions employed in micropropagation, light quality plays an important role in growth, specially morphogenesis and photosynthesis. The effect of radiation quality (350-740 nm) on the development and growth of zygotic embryos and in vitro plantlets of open-pollinated chestnut (Castanea crenata S. et Z.) were studied. Two types of explants were exposed for 4 weeks to cool white (W, as control), monochromatic red (R, peak emission 650 nm), monochromatic blue (B, peak emission 440 nm), red+blue (R+B, 1:1), or red+far-red (R+Fr, 1:1, far-red peak emission 720 nm) radiation from a light-emitting-diode (LED) system. While the zygotic embryos showed positive photoblastic behavior, their germination was inhibited by blue radiation. Hypocotyl elongation and root development were promoted by red radiation. The emergence of primary leaf and its expansion were faster under blue than under red radiation. In the plantlets, red and red+far-red radiation significantly increased the formation and growth of the root, whereas blue light reduced rooting. Therefore, radiation quality appears to influence some steps in the development of zygotic embryos and plantlets in the chestnut.

Numerical Study of Interacting Premixed Flames Including Gas Phase Radiation (복사열전달을 고려한 상호작용하는 예혼합화염의 수치해석)

  • 임인권;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.858-867
    • /
    • 1995
  • Characteristics of premixed flames in counter-flow system are numerically studied using a detailed chemical reaction mechanism including gas phase radiation. Without radiation effect accounted, low CO and high NO$_{x}$ emission indices are observed, when strain rate decreases, due to increased residence time and higher flame temperature. Higher NO$_{2}$ production has been also observed when two premixed flames are interacting or cold air stream is mixed with burned gas. The rate of NO$_{x}$ production and destruction is dependent upon the diffusional strength of H and OH radicals, the existence of NO and the concentration of HO$_{2}$. For radiating flames, the peak temperature and NO$_{x}$ production rate decreases as the strain rate decreases. At high strain rate, it is found that the effect of radiation on flame is little due to its negligible radiating volume. It is also found that NO$_{x}$ production from the interacting premixed flame is reduced due to reduced temperature resulting from radiation heat loss. It is concluded that the radiation from gas has significant effect of flame structure and on emission characteristics.ristics.

The Effect of Flame Radiation on NOx Emission Characteristics in Hydrogen Thrbulent Diffusion Flames (수소 난류확산화염에서 NOx 생성특성에 대한 화염열복사의 영향)

  • Kim, Seung-Han;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the 1/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

Experimental evaluation of fuel rod pattern analysis in fuel assembly using Yonsei single-photon emission computed tomography (YSECT)

  • Choi, Hyung-joo;Cheon, Bo-Wi;Baek, Min Kyu;Chung, Heejun;Chung, Yong Hyun;You, Sei Hwan;Min, Chul Hee;Choi, Hyun Joon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1982-1990
    • /
    • 2022
  • The purpose of this study was to verify the possibility of fuel rod pattern analysis in a fresh fuel assembly using the Yonsei single-photon emission computed tomography (YSECT) system. The YSECT system consisted of three main parts: four trapezoidal-shaped bismuth germanate scintillator-based 64-channel detectors, a semiconductor-based multi-channel data acquisition system, and a rotary stage. In order to assess the performance of the prototype YSECT, tomographic images were obtained for three representative fuel rod patterns in the 6 × 6 array using two representative image-reconstruction algorithms. The fuel-rod patterns were then assessed using an in-house fuel rod pattern analysis algorithm. In the experimental results, the single-directional projection images for those three fuel-rod patterns well discriminated each fuel-rod location, showing a Gaussian-peak-shaped projection for a single 10 mm-diameter fuel rod with 12.1 mm full-width at half maximum. Finally, we successfully verified the possibility of the fuel rod pattern analysis for all three patterns of fresh fuel rods with the tomographic images obtained by the rotational YSECT system.

Mercury Exchange Flux from Two Different Soil Types and Affecting Parameters

  • Park, Sang-Young;Kim, Pyung-Rea;Han, Young-Ji
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.199-208
    • /
    • 2013
  • Mercury exchange fluxes between atmosphere and soil surface were measured in two different types of soils; lawn soil (LS) and forest soil (FS). Average Hg emission from LS was higher than from FS although the soil Hg content was more than 2 times higher in forest soil. In LS, Hg emissions were much greater in warm season than in cold season; however, deposition was dominant in FS during warm season because of leafy trees blocking the solar radiation reaching on the soil surface. In both LS and FS, Hg fluxes showed significantly positive correlations with UV radiation and soil surface temperature during cold season. In addition, it was observed that emission showed positive correlation with UV radiation and soil temperature while there was negative relationship between deposition and UV radiation.

Investigation on Radiation Characteristics of 42″ AC-PDP (42″ AC-PDP의 방사특성에 대한 연구)

  • Lim Heon-Yong;Kim Min-Seok;Park Dongwook;Lee Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.841-847
    • /
    • 2004
  • EMI emission characteristics of 42" AC-PDP panel are investigated in this paper. First, EMI emission source was modeled the scan electrode and the sustain electrode to a simple electric and magnetic dipole type radiator. Second, EMI emission source was modeled as reconfigured the scan electrode and the sustain electrode. The primary source of EMI emission was investigated using FEM calculation of the wave impedance and 3 dB beam width. The third. the EMI emission level was estimated using the measured sustain electrode current. Also, EMI emission level of 42" AC-PDP was measured. The results show that the calculated EMI emission level from the simple electric dipole model was shown to agree with that from the corresponding FEM simulation.