• 제목/요약/키워드: Radiation Dosimetry

검색결과 615건 처리시간 0.025초

Clinical performance of FractionLab in patient-specific quality assurance for intensity-modulated radiotherapy : a retrospective study

  • Oh, Se An;Kim, Sung Yeop;Park, Jaehyeon;Park, Jae Won;Yea, Ji Woon
    • Journal of Yeungnam Medical Science
    • /
    • 제39권2호
    • /
    • pp.108-115
    • /
    • 2022
  • Background: This study was aimed at comparing and analyzing the results of FractionLab (Varian/Mobius Medical System) with those of portal dosimetry that uses an electronic portal imaging device. Portal dosimetry is extensively used for patient-specific quality assurance (QA) in intensity-modulated radiotherapy (IMRT). Methods: The study includes 29 patients who underwent IMRT on a Novalis-Tx linear accelerator (Varian Medical System and Brain-LAB) between June 2019 and March 2021. We analyzed the multileaf collimator DynaLog files generated after portal dosimetry to evaluate the same condition using FractionLab. The results of the recently launched FractionLab at various gamma indices (0.1%/0.1 mm-1%/1 mm) are analyzed and compared with those of portal dosimetry (3%/3 mm). Results: The average gamma passing rates of portal dosimetry (3%/3 mm) and FractionLab are 98.1% (95.5%-100%) and 97.5% (92.3%-99.7%) at 0.6%/0.6 mm, respectively. The results of portal dosimetry (3%/3 mm) are statistically comparable with the QA results of FractionLab (0.6%/0.6 mm-0.9%/0.9 mm). Conclusion: This paper presents the clinical performance of FractionLab by the comparison of the QA results of FractionLab using portal dosimetry with various gamma indexes when performing patient-specific QA in IMRT treatment. Further, the appropriate gamma index when performing patient-specific QA with FractionLab is provided.

A Comparison between Portal Dosimetry and Mobius3D Results for Patient-Specific Quality Assurance in Radiotherapy

  • Kim, Sung Yeop;Park, Jaehyeon;Park, Jae Won;Yea, Ji Woon;Oh, Se An
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: The purpose of this study was to compare the clinical quality assurance results of portal dosimetry using an electronic portal imaging device, a method that is extensively used for patient-specific quality assurance, and the newly released Mobius3D for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: This retrospective study includes data from 122 patients who underwent IMRT and VMAT on the Novalis Tx and VitalBeam linear accelerators between April and June 2020. We used a paired t-test to compare portal dosimetry using an electronic portal imaging device and the average gamma passing rates of MobiusFX using log files regenerated after patient treatment. Results: The average gamma passing rates of portal dosimetry (3%/3 mm) and MobiusFX (5%/3 mm) were 99.43%±1.02% and 99.32%±1.87% in VitalBeam and 97.53%±3.34% and 96.45%±13.94% in Novalis Tx, respectively. Comparison of the gamma passing rate results of portal dosimetry (3%/3 mm) and MobiusFX (5%/3 mm as per the manufacturer's manual) does not show any statistically significant difference. Conclusions: Log file-based patient-specific quality assurance, including independent dose calculation, can be appropriately used in clinical practice as a second-check dosimetry, and it is considered comparable with primary quality assurance such as portal dosimetry.

Internal Dosimetry: State of the Art and Research Needed

  • Francois Paquet
    • Journal of Radiation Protection and Research
    • /
    • 제47권4호
    • /
    • pp.181-194
    • /
    • 2022
  • Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.

삼중수소 피폭방사선량 평가의 경향과 이슈에 대한 고찰 (Trends and Issues in Metabolism and Dosimetry for Tritium Intake)

  • 김희근;공태영;정우태
    • Journal of Radiation Protection and Research
    • /
    • 제36권2호
    • /
    • pp.99-106
    • /
    • 2011
  • 원전에서 발생하는 방사성핵종 중에서 방사선작업종사자와 원전주변에 거주하는 일반인에 대한 피폭방사선량평가 측면에서 중요한 핵종 중에 하나가 삼중수소이다. 삼중수소는 인간의 체내로 섭취되어 내부피폭을 일으킨다. 원전 종사자 전체 피폭방사선량의 약 7%, 원전주변 일반인 피폭방사선량의 약 60-90%가 삼중수소에 의한 피폭으로 발생하고 있다. 이에 따라 국내외 연구소에서는 삼중수소에 대한 정확한 피폭방사선량 평가를 위해 많은 연구를 진행하고 있다. 본 논문은 삼중수소의 인체대사모델과 피폭방사선량 평가와 관련한 국내외 연구개발 동향을 정리하였고, 현안사항을 정리하였다.

DYNAMIC WEDGE의 임상 적용 가능성에 관한 고찰

  • 김영범;정세영;황웅구
    • 대한방사선치료학회지
    • /
    • 제7권1호
    • /
    • pp.103-110
    • /
    • 1995
  • Dynamic wedge system has been introduced to modify the beam profile and to make homogeneous isodose curves in the mass of irregular shape. Before the clinical use of dynamic wedge, several factors such as wedge transmission factor, dose profile, percent depth dose, and wedge angle have to be measured quantitatively. Film dosimetry is used to evaluate these factors in this study. A comparison of the result of the dynamic wedge to physical wedge system is made. A positive result for the application of the dynamic wedge to clinic is derived even though there is a limitation in accuracy of the dosimetry system used. To measure all factors quantitatively, more accurate dosimetry systems are required.

  • PDF

주기적 정도관리를 위한 One Click Film (OCF) 선량측정 시스템 (One Click Film (OCF) Dosimetry System for Routine QA)

  • 김소영;이병용;주관식;김종훈;안승도;이상욱;최은경
    • Radiation Oncology Journal
    • /
    • 제20권4호
    • /
    • pp.375-380
    • /
    • 2002
  • 목적 : 사용하기 편리한 주기적 QA용 필름 선량측정 시스템을 개발하고자 하였다. 대상 및 방법 : OCF 선량측정 시스템(One Click Film Dosimetry system)은 주기적 정도관리를 신속히 처리할 수 있도록 포그 값 설정 및 H&D 환산, 각도 조절, 영상 중심점 자동 설정, 대칭도 자동 계산, 관심이 있는 위치에서 프로파일을 볼 수 있도록 하는 기능, 3차원 선량 분포 영상 실시간 구현 등이 가능하도록 고안하였다. 결과 : 주기적 정도관리에 자주 사용되는 기능으로 영상의 중심점, 포그 값 설정과 H&D 환산(Background/H&D Correction), 대칭도, 등선량 분포도 그리고, 3차원 선량 분포 영상 실시간 구현 및 임의의 지점에 대한 프로파일을 한 번의 클릭으로 볼 수 있었다. 결론 : OCF 선량측정 시스템은 임상에서 정도관리를 수행하는 절차가 상품화된 필름 선량측정 프로그램에 비해 간단한 절차로 신속한 결과를 보여주었다. 앞으로 세련된 사용자 인터페이스 환경설계와 주변장치 인터페이스 같은 세부적인 기능 강화를 통해서 실제 임상에서 여러 분야에서 유용하게 이용할 수 있음을 보였다.

COMPUTATIONAL ANTHROPOMORPHIC PHANTOMS FOR RADIATION PROTECTION DOSIMETRY: EVOLUTION AND PROSPECTS

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Nuclear Engineering and Technology
    • /
    • 제38권3호
    • /
    • pp.239-250
    • /
    • 2006
  • Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as magnetic resonance (MR) imaging and computed tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed.

Contribution of light in high-energy film dosimetry using water substitute phantoms

  • Fujisaki, Tatsuya;Saitoh, Hidetoshi;Hiraoka, Takeshi;Kuwabara, Akio;Abe, Shinji;Inada, Tetsuo
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.272-274
    • /
    • 2002
  • The contribution of light in high-energy film dosimetry was examined using six commercially available solid water substitute phantoms. As six commercially available phantoms; RMI-451, Mix-DP, WE211, WE211-Black, PMMA and PMMA Black were evaluated in this study. It is difficult to evaluate the contribution of Cerenkov radiation and the optical permeability to the relative and/or absolute dosimetry using unpacked film in these phantoms. Therefore the contribution of Cerenkov radiation was estimated by the comparison between film densities in the shielded side (shutting off the light) and unshielded sides on a phantom. The effect of optical permeability was measured under ambient light by the time scale method. The results suggest that the use of black colored phantoms may improve the accuracy of dose measurement in film dosimetry.

  • PDF

Thermally assisted IRSL and VSL measurements of display glass from mobile phones for retrospective dosimetry

  • Discher, Michael;Kim, Hyoungtaek;Lee, Jungil
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.429-436
    • /
    • 2022
  • Investigations of retrospective dosimetry have shown that components of mobile phones are suitable as emergency dosimeters in case of radiological incidents. For physical dosimetry, components can be read out using optically stimulated luminescence (OSL), thermoluminescence (TL) and phototransferred thermoluminescence (PTTL) methods to determine the absorbed dose. This paper deals with a feasibility study of display glass from modern mobile phones that are measured by thermally assisted (Ta) optically stimulated luminescence. Violet (VSL, 405 nm) and infrared (IRSL, 850 nm) LEDs were used for optical stimulation and two protocols (Ta-VSL and Ta-IRSL) were tested. The aim was to systematically investigate the luminescence properties, compare the results to blue stimulated Ta-BSL protocol (458 nm) and to develop a robust measurement protocol for the usage as an emergency dosimeter after an incident with ionizing radiation. First, the native signals were measured to calculate the zero dose signal. Next, the reproducibility and dose response of the luminescence signals were analyzed. Finally, the signal stability was tested after the storage of irradiated samples at room temperature. In general, the developed Ta-IRSL and Ta-VSL protocols indicate usability, however, further research is needed to test the potential of a new protocol for physical retrospective dosimetry.