• Title/Summary/Keyword: Radiation Dosimeter

Search Result 408, Processing Time 0.026 seconds

Measuring Thermo-luminescence Efficiency of TLD-2000 Detectors to Different Energy Photons

  • Xie, Wei-min;Chen, Bao-wei;Han, Yi;Yang, Zhong-Jian
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.179-183
    • /
    • 2016
  • Background: As an important detecting device, TLD is a widely used in the radiation monitoring. It is essential for us to study the property of detecting element. The aim of this study is to calculate the thermo-luminescence efficiency of TL elements. Materials and Methods: A batch of thermo-luminescence elements were irradiated by the filtered X-ray beams of average energies in the range 40-200 kVp, 662 keV $^{137}Cs$ gamma rays and then the amounts of lights were measured by the TL reader. The deposition energies in elements were calculated by theory formula and Monte Carlo simulation. The unit absorbed dose in elements by photons with different energies corresponding to the amounts of lights was calculated, which is called the thermo luminescent efficiency (${\eta}^{(E)}$). Because of the amounts of lights can be calculated by the absorbed dose in elements multiply ${\eta}^{(E)}$, the ${\eta}^{(E)}$ can be calculated by the experimental data (the amounts of lights) divided by absorbed dose. Results and Discussion: The deviation of simulation results compared with theoretical calculation results were less than 5%, so the absorbed dose in elements was calculated by simulation results in here. The change range of ${\eta}^{(E)}$ value, relative to 662 keV $^{137}Cs$ gamma rays, is about 30% in the energy range of 33 keV to 662 keV, is in accordance by the comparison with relevant foreign literatures. Conclusion: The ${\eta}^{(E)}$ values can be used for updating the amounts of lights that are got by the direct ratio assumed relations with deposition energy in TL elements, which can largely reduce the error of calculation results of the amounts of lights. These data can be used for the design of individual dosimeter which used TLD-2000 thermo-luminescence elements, also have a certain reference value for manufacturer to improve the energy-response performance of TL elements by formulation adjustment.

Methylene blue-PVA Dosimeter (Methylene blue-PVA 선량계(線量計))

  • Chung, W.H.;Kim, H.S.;Kim, H.J.;Jung, H.T.
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.1
    • /
    • pp.64-66
    • /
    • 1985
  • A methylene blue-PVA system has been tested as a krad range dosimeter. Mb dye films were fabricated by casting PVA in solution with the methylene blue. In the air the system was irradiated by X-ray and the decolorisation of the dye film was found to remain unchanged for sufficiently long time. The radiation response on optical density at 670 nm in the Mb-PVA system shows a quite good linearity and reproducibility in the krad range.

  • PDF

Effective Doses in the Radial Gamma Radiation Field near a Point Source: Gender Difference and Deviation from the Personal Dose Equivalent (점선원 감마선장에서 유효선량의 성별차 및 개연선량당량과의 차이)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.299-307
    • /
    • 1997
  • The individual dose equivalent, $H_p$, effective dose, E, and gender specific effective dose, $E^m$ and E$^f$, were evaluated using the male and female phantoms of MIRD type located in the radial gamma radiation field near a point source. The point sources were placed at the distances of 15, 40 and 100 cm in front of the body at different heights. Two radionuclides, $^{137}Cs$ and $^{131}I$, were selected for the illustrative examples. In terms of the gender specific effective doses, $E^f$ is higher than $E^m$ with a few exceptions, e.g. the case where the point source is at the height of reproductive organs, but the differences from the sex- averaged values are not significant enough to justify use of gender specific dose conversion factors for the radial gamma field. The ratios $H_p$/E were in the range of 1 to 3 depending on the source and dosimeter positions when the dosimeter is worn on the front surface of the torso covering from chest to lower abdomen, but varied from 0.34 to 6.5 in extreme cases. When it is assumed that the typical handling procedure of radioactive source material and the typical dosimeter position(on the chest) be respected, the dosimeters calibrated against the broad parallel field appear to provide estimates with acceptable errors for the effective dose of workers exposed to radial broad gamma field around a point source.

  • PDF

A Study on the Secondary Carcinogenesis Rate of Vestibular Schwannoma Disease using Glass Dosimeter (유리선량계를 이용한 청신경초종 질환의 2차 발암률에 관한 연구)

  • Joo-Ah Lee;Gi-Hong Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.243-248
    • /
    • 2023
  • This study aims to analyze the secondary carcinogenesis rate caused by exposure of organs at risk of damage using a glass dosimeter during radiosurgery in vestibular schwannoma disease. Using a pediatric phantom of human tissue equivalent material, the volume of the tumor was set to a total of three volumes: 0.506 cm3, 1.008 cm3, and 2.032 cm3, and a radiosurgery plan was established with an average dose of 18.4 ± 3.4 Gy. After mounting the human body phantom on the table of surgical equipment, glass dosimeters were placed on the right eye, left eye, thyroid gland, thymus, right lung, and left lung to measure the exposure dose, respectively. In this study, the incidence of secondary cancer due to exposure to damaged organs during gamma knife radiosurgery in vestibular schwannoma disease with the largest tumor volume of 2.032 cm3 was measured with a glass dosimeter. This study studies the risk of secondary radiation exposure dose that can occur during stereotactic radiosurgery, and it is considered that it will be used as basic data in the field of radiation damage related to the stochastic effect of radiation in the future.

Estimation of the Characteristics for the Dose Distribution in the Polymer Gel by Means of Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 양성자 조사에 따른 Polymer Gel 내부의 선량 분포 특성 평가)

  • Park, Min-Seok;Kim, Gi-Sub;Jung, Hai-Jo;Park, Se-Young;Choi, In-Seok;Kim, Hyun-Ji;Yoon, Yong-Su;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.165-173
    • /
    • 2013
  • This study was the estimation of the dose distribution for proton, prompt gamma rays and proton induced neutron particles, in case of exposing the proton beam to polymer gel dosimeter and water phantom. The polymer gel dosimeter was compositeness material of Gelatin, Methacrylic acid, Hydroquinone, Tetrakis and Distilled water. The density of gel dosimeter was $1.04g/cm^3$ which was similar to water. The 72, 116 and 140 MeV proton beams were used in the simulation. Proton beam interacted with the nuclei of the phantom and the nuclei in excited states emitted prompt gamma rays and proton induced neutron particles during the process of de-excitation. The proton particles, prompt gamma rays, proton induced neutron particles were detected by polymer gel dosimeter and water phantom, respectively. The gap of the axis for gel was 2 mm. The Bragg-peak for proton particles in gel dosimeter was similar to water phantom. The dose distribution for proton and prompt gamma rays in gel dosimeter and water phantom was approximately identical in case of 72, 116 and 140 MeV for proton beam. However, in case of proton induced neutron particles for 72, 116 and 140 MeV proton beam, particles were not detected in gel dosimeter, while the Water phantom absorbed neutron particles. Considering the resulting data, gel dosimeter which was developed in the normoxic state attentively detected the dose distribution for proton beam exposure except proton induced neutron particles.

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.

Comparative and Feasibility Evaluation of Detection Ability of Relative Dosimeters using CsPbI2Br and CsPbIBr2 Materials in Brachytherapy QA (근접방사선치료 QA에서 CsPbI2Br과 CsPbIBr2를 이용한 상대 선량계들의 검출 능력 비교 및 적용가능성 평가)

  • Seung-Woo Yang;Sung-Kwang Park
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.433-440
    • /
    • 2023
  • High dose rate brachytherapy is a cancer treatment that intensively irradiates radiation to tumors by inserting isotopes with high dose rates into the body. For such a treatment, it is necessary to deliver an accurate dose to the tumor tissue through an accurate treatment plan while delivering only a minimum dose to the normal tissue. Therefore, it is very important to check the location accuracy of the source through accurate Quality Assurance (QA) in clinical practice. However, since the source position is determined using a ruler, automatic radiographer, video monitor, etc. in clinical practice, it yields inaccurate results. In this study, a semiconductor dosimeter using CsPbI2Br and CsPbIBr2 was fabricated. And, in order to analyze whether it is more suitable for the relative QA dosimeter for brachytherapy device among the two materials, the radiation detection ability of each was compared and evaluated. In order to evaluate the radiation detection ability in brachytherapy, the reproducibility and linearity of the two materials were evaluated in 192IR. In the reproducibility evaluation, CsPbI2Br presented a Relative Standard Deviatio(RSD) of 0.98% and CsPbIBr2 presented an RSD of 3.45%. In the linearity evaluation, the coefficient of determination (R2) of CsPbI2Br was presented as 0.9998, and the R2 of CsPbIBr2 was presented as 0.9994. As a result of the evaluation, it was found that CsPbI2Br was more stable in radiation detection while satisfying the evaluation criteria in the dosimeter manufactured in this experiment. Therefore, CsPbI2Br material is suitable for application as a relative dosimeter for radiation detection in brachytherapy devices.

Clinical Implementation of an In vivo Dose Verification System Based on a Transit Dose Calculation Tool for 3D-CRT

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Kim, Dong Wook
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1571-1576
    • /
    • 2018
  • We developed and evaluated an algorithm to calculate the target radiation dose in cancer patients by measuring the transmitted dose during 3D conformal radiation treatment (3D-CRT) treatment. The patient target doses were calculated from the transit dose, which was measured using a glass dosimeter positioned 150 cm from the source. The accuracy of the transit dose algorithm was evaluated using a solid water phantom for five patient treatment plans. We performed transit dose-based patient dose verification during the actual treatment of 34 patients who underwent 3D-CRT. These included 17 patients with breast cancer, 11 with pelvic cancer, and 6 with other cancers. In the solid water phantom study, the difference between the transit dosimetry algorithm with the treatment planning system (TPS) and the measurement was $-0.10{\pm}1.93%$. In the clinical study, this difference was $0.94{\pm}4.13%$ for the patients with 17 breast cancers, $-0.11{\pm}3.50%$ for the eight with rectal cancer, $0.51{\pm}5.10%$ for the four with bone cancer, and $0.91{\pm}3.69%$ for the other five. These results suggest that transit-dosimetry-based in-room patient dose verification is a useful application for 3D-CRT. We expect that this technique will be widely applicable for patient safety in the treatment room through improvements in the transit dosimetry algorithm for complicated treatment techniques (including intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT).

A Study on the Measurement Linearity of Photoluminescent Dosimeter (형광유리선량계의 계측 직선성 연구)

  • Jeong, Kyeong-Hwan;Jung, Dong-Kyung;Seo, Jeong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.841-847
    • /
    • 2021
  • Related institutions that use radiation are diverse in Korea, such as research, medical care, and education. Recently, the number of examinations and visits to medical institutions is increasing. As a result, the number of radiological examinations in medical institutions is increasing. Radiation safety management is necessary as well as exposure of radiation workers. For safety management, first of all, it is necessary to wear the personal exposure dosimeter correctly and measure it accurately after wearing it. This study tries to evaluate and verify the measurement straightness of PLD devices by radiation of a diagnostic generator. Radiation division irradiation time interval was measured after irradiating 10 times at 10, 30, and 60 sec and irradiating the irradiation distance from 30 to 100 cm at 10 cm intervals to measure the change in absorbed dose depending on the distance. As a result, there was no difference in absorbed dose by time interval. This is considered to be helpful in various studies by using a diagnostic generator for the study of high absorbed dose.

Radiation Safety Exploration Using Radio-photoluminescence Dosimeter for Crookes Tubes in Junior and Senior High School in Japan

  • Akiyoshi, Masafumi;Do, Duy Khiem;Yamaguchi, Ichiro;Kakefu, Tomohisa;Miyakawa, Toshiharu
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.106-111
    • /
    • 2021
  • Background: Crookes tube is utilized in junior high and high schools in Japan to study the character of electrons and current, and not for radiological education. There is no official guideline or regulation for these radiation source to the public. Therefore, most teachers have no information about the leakage of X-rays from Crookes tube. The peak energy of X-rays is approximately 20 keV, and it is impossible to measure using conventional survey meters. Materials and Methods: Each leakage dose of low energy X-rays from 38 Crookes tube in the education field, such as junior and senior high schools in Japan, was explored by the teachers in the school using radio-photoluminescence (RPL) dosimeters. Before and after the measurements, the dosimeters were sent by postal mails. Results and Discussion: At the exploration in this study, it was estimated that the 70 ㎛ dose equivalent, Hp(0.07) of X-rays from 31 Crookes tubes were smaller than 100 µSv in 10 minutes, at the distance of 1 m, where the Crookes tube was usually observed. However, the highest dose was estimated as 0.69 mSv by an equipment with the full power. Furthermore, one Crookes tube exhibited 0.62 mSv with minimum output power of the induction coil. This relatively large dose was reduced by the shorter distance of discharge electrodes of the induction coil. Conclusion: The leakage dose of low energy X-rays from 38 Crookes tube was explored using RPL dosimeters. It was estimated that the Hp(0.07) of X-rays from 31 Crookes tubes were smaller than 100 µSv in 10 minutes at the distance of 1 m, while some equipment radiated a higher dose. With this study, the provisional guideline for the safety operation of Crookes tube is established.