• Title/Summary/Keyword: Radiation Compensation

Search Result 75, Processing Time 0.053 seconds

Comparative Measurement of Radioactivity with Standard Gamma-ray Ionization Chamber System (표준 감마선 전리함 장치에 의한 방사능 비교 측정)

  • Park, Tae-Soon;Woo, Dong-Ho;Oh, Pil-Jae;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.11-18
    • /
    • 1984
  • A Standard gamma-ray ionization chamber system was developed with a well type ionization chamber and micro current measuring circuit. Micro current was measured by the automatic Townsend balance with stepwise compensation method. For gamma emitting nuclides such as $^{241}Am,\;^{133}Ba,\;^{60}Co,\;^{134}Cs,\;^{137}Cs,\;and\;^{22}Na$ relative calibration factors to $^{226}Ra$ reference source were calculated and detection .efficiency curve was determined as a fudnction of gamma energy.

  • PDF

Reproduction strategy of radiation data with compensation of data loss using a deep learning technique

  • Cho, Woosung;Kim, Hyeonmin;Kim, Duckhyun;Kim, SongHyun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2229-2236
    • /
    • 2021
  • In nuclear-related facilities, such as nuclear power plants, research reactors, accelerators, and nuclear waste storage sites, radiation detection, and mapping are required to prevent radiation overexposure. Sensor network systems consisting of radiation sensor interfaces and wxireless communication units have become promising tools that can be used for data collection of radiation detection that can in turn be used to draw a radiation map. During data collection, malfunctions in some of the sensors can occasionally occur due to radiation effects, physical damage, network defects, sensor loss, or other reasons. This paper proposes a reproduction strategy for radiation maps using a U-net model to compensate for the loss of radiation detection data. To perform machine learning and verification, 1,561 simulations and 417 measured data of a sensor network were performed. The reproduction results show an accuracy of over 90%. The proposed strategy can offer an effective method that can be used to resolve the data loss problem for conventional sensor network systems and will specifically contribute to making initial responses with preserved data and without the high cost of radiation leak accidents at nuclear facilities.

Evaluation of the Breast plan using the TLD and Mosfet for the skin dose (열형광선량계(TLD)와 MOSFET을 이용한 유방암 방사선치료계획에 대한 피부선량 평가)

  • Kim, seon myeong;Kim, young bum;Bak, sang yun;Lee, sang rok;Jeong, se young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose : The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. Subjectss and Methods : In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. Results : On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% ~ 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner'was highest in the MOSFET. Conclusion : Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay close attention. Using the treatment planning of dose fluence is good to compensate the lack of dose, but It increases the dose of the selective range rather than the overall dose. Therefore, choosing the radiotherapy technique is desirable in the lights of the age and performance of the patient.

  • PDF

Experimental Study of the In-Water Radiation Impedance of the Finite Baffle Cylinder Radiator (유한 배플 원통 진동체의 수중 방사 임피던스에 대한 실험적 연구)

  • Kim, Won-Ho;Yoon, Jong-Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.23-29
    • /
    • 1994
  • In this paper, the measured in-water radiation impedance of cylindrical piezoelectric radiator with finite baffle is compared to the existing theoretical result of that with infinite baffle and the effect of baffle on the radiation impedance is examined. Comparision between measurement and theoretical result of radiation impedance shows that the measured radiation impedance tends to be that of the infinite baffle as the baffle length increases. Another finding of the comparision in that the effect of baffle is more dominant in radiation reactance than in radiation resistance. Therefore, for the use of theoretical radiation impedance of infinite baffle on the design of acoustic transducer, the impedance compensation to the baffle length should conducted.

  • PDF

Radiation-hardened-by-design preamplifier with binary weighted current source for radiation detector

  • Minuk Seung;Jong-Gyun Choi ;Woo-young Choi;Inyong Kwon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.189-194
    • /
    • 2024
  • This paper presents a radiation-hardened-by-design preamplifier that utilizes a self-compensation technique with a charge-sensitive amplifier (CSA) and replica for total ionizing dose (TID) effects. The CSA consists of an operational amplifier (OPAMP) with a 6-bit binary weighted current source (BWCS) and feedback network. The replica circuit is utilized to compensate for the TID effects of the CSA. Two comparators can detect the operating point of the replica OPAMP and generate appropriate signals to control the switches of the BWCS. The proposed preamplifier was fabricated using a general-purpose complementary metal-oxide-silicon field effect transistor 0.18 ㎛ process and verified through a test up to 230 kGy (SiO2) at a rate of 10.46 kGy (SiO2)/h. The code of the BWCS control circuit varied with the total radiation dose. During the verification test, the initial value of the digital code was 39, and a final value of 30 was observed. Furthermore, the preamplifier output exhibited a maximum variation error of 2.39%, while the maximum rise-time error was 1.96%. A minimum signal-to-noise ratio of 49.64 dB was measured.

Program for Estimating the Probability of Causation to Korean Radiation Workers with Cancer (국내 방사선작업종사자에게 발생한 암의 방사선 인과도를 평가하기 위한 인과확률 계산 프로그램)

  • Jeong, Mee-Seon;Jin, Young-Woo;Kim, Chong-Soon
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.221-230
    • /
    • 2004
  • The probability of causation(PC) is the measure to ascertain the likelihood that a particular cancer may be attributed to a particular prior exposure to radiation. Since the PC is involved in several uncertainties, it is desirable to use the confidence limit for the PC, not a point estimate for determining whether to award compensation. We developed the program for estimating the PC to Korean radiation workers with cancer, the so-called RHRI-PEPC, which is based on the most reasonable model for radiation cancer risk and recent Korean baseline data. RHRI-PEPC gives us the upper confidence limit for the PC after adjusting several uncertainties and therefore we can assess more reasonably the causality of radiation exposure for cancer occurred in Korean radiation workers.

Implementation of Electronic Personal Dosimeter Using Silicon PIN Photodiode (실리콘 핀 포토다이오드를 이용한 능동형 방사선 피폭 전자선량계의 구현)

  • 이운근;백광렬;권석근
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.296-303
    • /
    • 2003
  • A personal portable type electronic dosimeter using silicon PIN photodiode and small GM tube is recently attracting much attention due to its advantages such as an immediate indication function of dose and dose rate, alerting function, and efficient management of radiation exposure history and dose data. We designed and manufactured a semiconductor radiation detector aimed to directly measure X-ray and v-ray irradiated in silicon PIN photodiode, without using high-priced scintillation materials. Using this semiconductor radiation detector, we developed an active electronic dosimeter, which measures the exposure dose using pulse counting method. In this case, it has a shortcoming of over-evaluating the dose that shows the difference between the dose measured with electronic dosimeter and the dose exposed to the human body in a low energy area. We proposed an energy compensation filter and developed a dose conversion algorithm to make both doses indicated on the detector and exposed to the human body proportional to each other, thus enabling a high-precision dose measurement. In order to prove its reliability in conducting personal dose measurement, crucial for protecting against radiation, the implemented electronic dosimeter was evaluated to successfully meet the IEC's criteria, as the KAERI (Korea Atomic Energy Research Institute) conducted test on dose indication accuracy, and linearity, energy and angular dependences.

EXPERIMENTAL STUDY ON MEASUREMENT OF EMISSIVITY FOR ANALYSIS OF SNU-RCCS

  • CHO YUN-JE;KIM MOON OH;PARK GOON-CHERL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-108
    • /
    • 2006
  • SNU-RCCS is a water pool type RCCS (Reactor Cavity Cooling System) developed for VHTR (Very High Temperature Reactor) application by SNU (Seoul National University). Since radiation heat transfer is the major process of passive heat removal in a RCCS, it is important to determine the precise emissivity of the reactor vessel. Review studies have used a constant emissivity in the passive heat removal analysis, even though the emissivity depends on many factors such as temperature, surface roughness, oxidation level, wavelength, direction, atmosphere conditions, etc. Therefore, information on the emissivity of a given material in a real RCCS is essential in order to properly analyze the radiation heat transfer in a VHTR. The objectives of this study are to develop a method for compensation of the factors affecting the emissivity measurement using an infrared thermometer and to estimate the true emissivity from the measured emissivity via the developed method, especially in the SNU-RCCS environment. From this viewpoint, we investigated factors such as the attenuation effect of the window, filling gas, and the effect of background radiation on the emissivity measurements. The emissivity of the vessel surface of the SNU-RCCS facility was then measured using a sight tube. The background radiation was subsequently removed from the measured emissivity by solving a simultaneous equation. Finally, the calculated emissivity was compared with the measured emissivity in a separate emissivity measurement device, yielding good agreement with the emissivity increase with vessel temperature in a range of 0.82 to 0.88.