• Title/Summary/Keyword: Radiation Accident

Search Result 311, Processing Time 0.026 seconds

Uncertainty analysis of containment dose rate for core damage assessment in nuclear power plants

  • Wu, Guohua;Tong, Jiejuan;Gao, Yan;Zhang, Liguo;Zhao, Yunfei
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.673-682
    • /
    • 2018
  • One of the most widely used methods to estimate core damage during a nuclear power plant accident is containment radiation measurement. The evolution of severe accidents is extremely complex, leading to uncertainty in the containment dose rate (CDR). Therefore, it is difficult to accurately determine core damage. This study proposes to conduct uncertainty analysis of CDR for core damage assessment. First, based on source term estimation, the Monte Carlo (MC) and point-kernel integration methods were used to estimate the probability density function of the CDR under different extents of core damage in accident scenarios with late containment failure. Second, the results were verified by comparing the results of both methods. The point-kernel integration method results were more dispersed than the MC results, and the MC method was used for both quantitative and qualitative analyses. Quantitative analysis indicated a linear relationship, rather than the expected proportional relationship, between the CDR and core damage fraction. The CDR distribution obeyed a logarithmic normal distribution in accidents with a small break in containment, but not in accidents with a large break in containment. A possible application of our analysis is a real-time core damage estimation program based on the CDR.

The Identification, Diagnosis, Prospective, and Action (IDPA) Method for Facilitating Dialogue between Stakeholders: Application to the Radiological Protection Domain

  • Jacques Lochard;Win Thu Zar;Michiaki Kai;Ryoko Ando
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.107-116
    • /
    • 2023
  • This article reviews the experience of applying the Identification, Diagnosis, Prospective, and Action (IDPA) facilitating method as a means of promoting practices of dialogue between stakeholders in the radiological protection field. After presenting the characteristics of the IDPA method and its ability to promote active listening, participation, and dialogue among stakeholders facing complex situations, as well as the procedural aspects associated with its practical implementation, the article describes three examples of the application of the method in the field of radiological protection. The first one presents how the IDPA method supported a debate among decision-makers, authorities, experts, professionals, and representatives of non-governmental organizations about how to engage stakeholders in radiological protection. The second example presents how the IDPA method was used in a series of dialogue meetings to explore the challenges of the post-nuclear accident situation resulting from the Fukushima Daiichi Nuclear Power Plant accident. The third one presents the application of the method in the context of a training course organized by Nagasaki University in the affected area close to the damaged plant. Experience has shown that the IDPA method makes it possible to develop responses to problems posed in very different contexts and, in many cases, to find compromises regarding their solutions. The IDPA method has the merit of allowing each of the participants to better understand the situation they are faced with, even if such a positive result is not always achieved.

Size Measurement of Radioactive Aerosol Particles in Intense Radiation Fields Using Wire Screens and Imaging Plates

  • Oki, Yuichi;Tanaka, Toru;Takamiya, Koichi;Osada, Naoyuki;Nitta, Shinnosuke;Ishi, Yoshihiro;Uesugi, Tomonori;Kuriyama, Yasutoshi;Sakamoto, Masaaki;Ohtsuki, Tsutomu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.216-221
    • /
    • 2016
  • Background: Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. Materials and Methods: A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of $^{11}C$-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. Results and Discussion: The size distribution for $^{11}C$-bearing aerosol particles was found to be ca. $70{\mu}m$ in geometric mean diameter. The size was similar to that for $^7Be$-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. Conclusion: The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

Radiation Activity of Safety-Related Fission Products of DUPIC Fuel

  • Ryu, Ho-Jin;Park, Chang-Je;Park, Hangbok;Song, Kee-Chan
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.397-398
    • /
    • 2004
  • It is important to estimate the radiation activity of the nuclear fuel which is a source term of the loss of coolant accident. The purpose of this study is to identify the most important parameters of the source term calculation based on three fuel types: typical natural uranium CANDU fuel, slightly enriched uranium and DUPIC fuel. The characteristics of the radiation source term were analyzed through sensitivity calculations of the linear power, fuel turnup, and the power shape.(omitted)

  • PDF

The Effects of Cynanchi wilfordii Radix Ethanol Extracts upon Irradiated Rat's Blood and Organ (백하수오 에탄올추출물이 방사선조사에 따른 흰쥐의 혈구 및 장기에 미치는 영향)

  • Kim, Jang-Oh;Choi, Jun-Hyeok;Shin, Ji-Hye;Jung, Do-Young;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.451-459
    • /
    • 2016
  • The development of radioprotector is being actively conducted in order to reduce the damage from over radiation exposure at radiation accident or radiation therapy. So this study was confirmed for radiation protective effects using the Cynanchi wilfordii Radix that has been known to be effective for antioxidant activity, anti-cancer, immune enhancing effects. The method of this study was administered orally Cynanchi wilfordii Radix ethanol extracts to Sprague Dawley Rat(SD Rat) for 14 days once a day, while measuring changed blood cell, spleen index, liver and uterus tissue along the change in time of 1, 4, 7 and 21 days after X-ray beam of 7 Gy irradiation. As the result of the experiment, the experimental group's rats which are administered with Cynanchi Wilfordii Radix ethanol extracts showed a rapid recovery in white blood cell count(p < 0.05) and spleen index(p < 0.05). In addition, condensation of nuclei, cytoplasmic swelling, and inflammatory cell infiltration in experimental group's liver cell was decreased more than in irradiation group's component. Further, experimental group's Uterine gland decreased the apoptosis more than irradiation group's components did. It is expected that Cynanchi Wilfordii Radix extracts will be useful as a new radioprotector. With above in mind, this paper may provide appropriate implications with the field of emergency management such as radiation accident.

Radiological Accident and Acute Radiation Syndrome (방사선 사고와 급성 방사선 증후군)

  • Roh, Hyung-Keun
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.9 no.2
    • /
    • pp.39-48
    • /
    • 2011
  • In mass casualty situation due to radiological accidents, it is important to start aggressive management with rapid triage decisions. External contamination needs immediate decontamination and internal contamination should be treated with special expertise and equipment to prevent the rapid uptake of radionuclides by target organs. Acute radiation syndrome shows a sequence of events that varies with the severity of the exposure. More severe exposures generally lead to more rapid onset of symptoms and severe clinical findings. After the massive exposure, various systems of the body reflect their severe damages that can lead to death within hours or up to several months. The disease progression has classically been divided into four stages: prodromal, latent, manifest illness, and recovery or death. Three characteristic clusters of symptoms including the hematopoietic syndrome, the gastrointestinal syndrome and the cerebrovascular syndrome are all associated with the acute radiation syndrome. The standard medical management of the patients with a potentially survivable radiation exposure includes good medical, surgical and supportive measures. Specific treatment with cytokines and bone marrow transplantation should be considered. The management of internal contamination is much the same as the treatment of poisoning. The standard decontamination should be applied to reduce uptake, and the chelating agents can be administered to enhance the clearance of radioisotopes. Radioactive iodine ($^{131}I$) as one of the nuclear fission products can increase the incidence of thyroid cancer in children. Potential benefit of potassium iodide prophylaxis is greater especially in neonates, infants and small children.

  • PDF

Awareness of parents and infants on radiation leak in Fukushima in Japan (일본 후쿠시마 방사선 누출에 관한 유치원의 유아와 학부모 인식 조사)

  • Park, Yun;Lee, Jun-Haeng;Kim, Hyun-Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.325-328
    • /
    • 2011
  • The object of this study is to suggest national health material on the basis of awareness of parents and infants on radiation leak in Fukushima in Japan. This research investigated and analysed the 147 questionnaire forms out of 155 who are composed of 97 parents in 'H' kindergarten living in 'G' metropolitan city and 50 infants (5 years old, 27boys and 23 girls). In conclusion, the role of press is very important on the matter of radiation leak damage, and as a result, specific and practical management of curriculum regarding it is essential to provide parents and infants with useful information to improve national wellbeing.

Radiation Shield Analysis for Spent Fuel Shipping Cask (핵연료 수송용기의 방사선 차폐해석)

  • Cho, Kun-Woo;Kim, Hee-Won;Kwon, Seog-Kun;Kwak, Eun-Ho;Moon, Philip-S.
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.148-154
    • /
    • 1985
  • Radiation shield design for a shipping cask, KSC-1, was evaluated to verify that the cask can be used in the transportation of a spent fuel assembly discharged from KNU 5 & 6. Radiation source term of the spent fuel assembly was calculated with the computer program ORIGEN-79, QAD-CG, ANISN-KA and DOT 3.5 codes Were used in the shielding calculations and the nuclear cross section data needed was extracted from the DLC-23/CASK library. It is concluded that KSC-1 shipping cask satisfies the requirements specified in the relevant regulations under normal conditions of transport and under accident conditions in transport.

  • PDF

Housing Analysis for Ocean Radiation Detection (해양 방사선 탐지를 위한 하우징 분석)

  • Park, Gang-teak;Kim, Jong-Yeol;Jung, Hyun-kyu;Lee, Nam-ho;Hwang, Young-gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.714-715
    • /
    • 2017
  • Much of the interest in ocean radiation detection has been heightened as a lot of radioactivity has leaked to the ocean due to the accident at the Fukushima nuclear power plant in Japan. In the study, MCNP simulation for radiation detection in the ocean was performed. Unlike in the air, the marine environment must ensure the stability of the sensor from water depth, temperature, pressure, and salinity. In the marine environment, too much radiation is shielded. Therefore, it is an object to select a housing with a low radiation shielding ratio.

  • PDF

The Estimated Evacuation Time for the Emergency Planning Zone of the Kori Nuclear Site, with a Focus on the Precautionary Action Zone

  • Lee, Janghee;Jeong, Jae Jun;Shin, Wonki;Song, Eunyoung;Cho, Cheolwoo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.196-205
    • /
    • 2016
  • Background: The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. Materials and Methods: The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. Results and Discussion: According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to $10mSv{\cdot}h^{-1}$ of radiation at the Exclusion Area Boundaries (EAB) boundary and $4-6mSv{\cdot}h^{-1}$ at the PAZ boundary. Conclusion: It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts.