• Title/Summary/Keyword: Radiated wave

Search Result 176, Processing Time 0.034 seconds

Far-Zone Electric Fields Radiated by A Coaxial Cable Through An Aperature In A Perfectly Conducting Ground Plane (무한도체 평면상에 놓여있는 동축 케이블의 개구면을 통하여 복사되는 원거리 전계)

  • 최재훈;성혁재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.56-62
    • /
    • 1994
  • Far-zone electric fields radiated by a coaxial cable through an aperture in a perfectly conducting ground plane are calculated utilizing the dyadic Green's function and vector wave functions. In this paper the outer radius $\alpha$ is assumed to be less than 0.02 so that the aperture fields is well approximated by the dominant TEM mode in the coaxial cable. The result of present approach is compared with the readily obtained solution. The present solution is valid outside of the spherical regions with radius `$\alpha$' from the center of coaxial cable.

  • PDF

An Experimental Study on Relationship of the Engine rpm and the Strength of Electro-magnetic Waves in the Engine Room (엔진 회전수와 엔진룸 내의 전자파 세기의 관계에 대한 실험적 연구)

  • Choe, Gwang-Je
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.112-118
    • /
    • 2006
  • In this paper, we presented experimental data of the strength of the electro-magnetic waves in the engine room of automobiles. Measured frequency ranges are $145{\sim}380MHz$ and $844{\sim}1044MHz$. Experimental studies are conducted by measuring the radiated power of the frequency spectrum for above frequency bands. The $\lambda/2$ dipoles used for measurement are fabricated to comply with the COMMISSION DIRECTIVE 95/54EC. Experimental results confirm that the level of radiated power in the engine room at idling rpm is about 3dB higher than that of 1500rpm.

Characteristics of Radiated Electromagntic Wave Caused by Progress of Partial Discharge in Power XLPE(Crosslinkable Polyethylene) Dielectric (전력용 XLPE 절연체의 부분방전진전에 따른 방사전자파 특성)

  • Lee, H.C.;Park, K.S.;Yoon, D.H.;Lee, S.H.;Kim, J.H.;Kim, K.Ch.;Lee, K.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.304-307
    • /
    • 2004
  • This paper simulated partial discharge caused by 22.9[kV] power cable using XLPE(Peroxide Crosslinkable Polyethylene) insulation having the outside damage. As one of the insulation diagnostic method a radiated electromagnetic waves were measured by an UHF method using a BiconiLog antenna(EMCO-3142) and a spectrum analyzer used to measure EMI, EMC. From results of this study, It was confirmed that discharge progress were possible to be estimated by the proposed method.

  • PDF

Experimental study on the alleviation of micro-pressure waves radiated from the tunnel exit with the slanted portals on the high-speed train operations of 300km/h (300km/h급 고속철도의 터널 미기압파 저감을 위한 경사갱구의 실험적 연구)

  • Kim, Dong-Hyeon;Min, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.841-846
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to He compression wave is a special physics Phenomena created by high-speed train-tunnel interfaces. On this work, the method for reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum angle of the slanted portal using the moving model rig. According to the results of the present study, the maximum value of micro pressure wave is reduced by 19.2% fer the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% far the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

A Design of Ferrite Electromagnetic Wave Absorber Three Layered Type with Wide-Band Characteristics. (광대역 특성을 갖는 3층형 페라이트 전파흡수체의 설계)

  • 이창우;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • According to the rapid development of the electric industry, the demand of the frequency allocation and the usage of electromagnetic wave are increased due to automation of modem society. Electromagnetic wave absorbers for anechoic chamber are needed to broaden the effective frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve the above requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the effective frequency bandwidth by the way of forming air layer(practically in urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 400 MHz in bandwidth. In this paper, a broadband electromagnetic wave absorber are designed, which has the reflection characteristics less than -20 dB from 30 MHz to 8,000 MHz in the bandwidth. A super broadband electromagnetic wave absorber is achieved by inserting square Ferrite Cylinders Type with the thickness less than 23.5 mm and with the frequency band from 30 MHz to 8,000 MHz under the above tolerance limits. The purpose of this research is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell and also a wall material for preventing TV ghost, etc.

  • PDF

Improvement of Noise Characteristics by Analyzing Power Integrity and Signal Integrity Design for Satellite On-board Electronics (위성용 전장품 탑재보드의 Power Integrity 및 Signal Integrity 설계 분석을 통한 노이즈 성능 개선)

  • Cho, Young-Jun;Kim, Choul-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • As the design complexity and performances are increased in satellite electronic board, noise related problems are also increased. To minimize the noise issues, various design improvements are performed by power integrity and signal integrity analysis in this research. Static power and dynamic power design are reviewed and improved by DC IR drop and power impedance analysis. Signal integrity design is reviewed and improved by time domain signal wave analysis and PCB(Printed Circuit Board) design modifications. And also power planes resonance modes are checked and mitigation measures are verified by simulation. Finally, it is checked that radiated noise is reduced after design improvements by EMC(Electro Magnetic Compatibility) RE(Radiated Emission) measurement results.

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

A Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber (전파무향실용 페라이트 전파흡수체의 설계)

  • 이창우;김동일;김하근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.408-413
    • /
    • 1998
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve it the alone requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer(practically use urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 600 MHz in bandwidth. Accordingly, in this paper, a broadened electromagnetic wave absorber will be designed, which has the reflection characteristics less than -20 dB from 30 MHz to 6000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 11 m and with the frequency band from 30 MHz to 6000 MHz under the above tolerance limits. The purpose of this research is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention TV ghost, etc.

  • PDF

Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber (전파무향실용 페라이트 전파흡수체의 설계)

  • 김동일;이창우;김하근;전상엽;정세모
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve the above requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer. Therefore, an air layer is formed absorber between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 450 MHz in frequency band, far narrower than the aimed bandwidth. The purpose of this paper is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention of TV ghost, etc. Accordingly, in this paper, a broadened electromagnetic wave absorber is designed, which has the reflection characteristics less than -20 dB from 30 MHz to 5,430 or 8,000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 23.5 m in three-layed type and with the frequency band from 30 MHz to 5,430-8,000 MHz under the above tolerance limits.

  • PDF

Numerical Analysis of the Mach Wave Radiation in an Axisymmetric Supersonic Jet (축대칭 초음속 제트에서의 마하파 방사에 관한 수치적 연구)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.71-77
    • /
    • 2000
  • An axisymmetric supersonic jet is simulated at a Mach number of 1.5 and a Reynolds number of $10^5$ to identify the mechanism of sound radiation from the jet. The present simulation is performed based on the high-order accuracy and high-resolution ENO(Essentially Non-Oscillatory) schemes to capture the time-dependent flow structure representing the sound source. In this simulation, optimum expansion jet is selected as a target, where the pressure at nozzle exit is equal to that of the ambient pressure, to see pure shear layer growth without effect of change in jet cross section due to expansion or shock wave generated at nozzle exit. Shock waves are generated near vortex rings, and discernible pressure waves called Mach wave are radiated in the downstream direction with an angle from the jet axis, which is characteristic of high speed jet noise. Furthermore, vortex roll-up phenomena are observed through the visualization of vorticity contours.

  • PDF