• Title/Summary/Keyword: Radiated noise

Search Result 469, Processing Time 0.019 seconds

A Study on the Characteristics of Echolocation Signals of the Common Dolphin, Delphinus Delphis (참돌고래의 반향정위 신호특성에 관한 연구)

  • 신형일;윤갑동;신현옥;최한규;박태건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.189-195
    • /
    • 2001
  • The characteristics of echolocation signals of the Common Dolphin, Delphinus Delphis was observed by the hydrophone in order to detect exactly distribution and migration on whales and dolphins in Korean Coastal waters. It's observation was carried out at the position of 13 mm off Gam-Po of Korean east-southern sea at 3rd-5th. April and 13th-15th. October, 1999. The results obtained are summarized as follows: (1) The frequency range of ship's noise and ambient noise in the observed station was 0.5-0.3 kHz, that ones could be influenced to the behavior of common dolphins which carry out echolocation using low-frequency. (2) The common dolphin was radiated single click of 8.6 ms and double click of 4.8 ms pulse width during these observation (3) The high click frequencies of common dolphin were 5.10 kHz, 7.22 kHz, 10.60 kHz with the click pulse width of 4.0 ms, 2.6 ms, 1.0 ms, respectively. In case of low-frequency 1-2 kHz, that is, 1.12 kHz, 1.38 kHz, 1.82 kHz, pulse width were 22.4 ms, 2.05 ms, 11.9 ms, respectively and they showed a tendency using triple click signal. (4) The pulse width, pulse recurrence interval and frequency range of the observed echolocation signals were 2.4-8.4 ms, 9.0-40.0 ms, 0.60-10.63 kHz respectively, and frequency spectrum level was 100-125 dB for single, double, triple click signals.

  • PDF

Optimization Design in Time Domain on Impulse GPIR System (임펄스 GPIR시스템의 시간영역 최적화 설계)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • In this paper, system optimization design technique of an impulse ground penetrating image radar (GPIR) in time domain is proposed to improve depth resolution of the system. For the purpose, time domain analysis method of key components such as impulse generator and UWB antenna is explained and by simulation, parameters of each component are determined. In particular, by standardizing the impulse signal, spectrum efficiency of a radiated impulse signal is improved and a U-shaped planar dipole antenna for a UWB antenna is developed. By equipping a parabolic metal reflector with the proposed antenna, external noise is prevented and the ability of radiating an input impulse into ground is improved. In addition, to remove ringing effect of the propose antenna which causes serious degradation of the system performance, resistors are loaded at the edge of the antenna and then Tx and Rx UWB antennas are optimized by simulation in time domain. For images of targets buried under the ground migration technique is applied and influence of tough ground surface on distortion of received impulse signals is reduced using technique of noise and signal distortion reduction in time domain and its time resolution is enhanced. To verify the design optimization procedure, a prototype of an GPIR and an artificial test field are made. Measurement results show that the resolution of the system designed is as good as that of a theoretical model.

An Effective Mitigation Method on the Signal-Integrity Effects by Splitting of a Return Current Plane (귀환 전류 평면의 분할에 기인하는 신호 무결성의 효과적인 대책 방법)

  • Jung, Ki-Bum;Jun, Chang-Han;Chung, Yeon-Choon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.366-375
    • /
    • 2008
  • Generally a return current plane(RCP) of high speed digital and analog part is partitioned. This is achieved in order to decrease the noise interference between subsystem in PCBs(Printed Circuit Boards). However, when the connected signal line exists between each sub system, this partition will cause unwanted effects. In a circuital point of view, RCP partition has a bad influence upon signal integrity. In a EMI(Electromagnetic Interference) point of view, the partition of the return current plane becomes a primary factor to increase the radiated emission. Component bridge(CB) is usecl for the way of maintaining signal integrity, still specific user's guide doesn't give sufficient principle. In a view point of signal integrity, design principle of multi-CB using method will be analyzed by measurement and simulation. And design principle of noise mitigation will be provided. Generally interval of CB is ${\lambda}/20$ ferrite bead. In this study. When multi-CB connection is applied, design principle of ferrite bead and chip resistor is proved by measurement and simulation. Multi-connected chip resistance$(0{\Omega})$ is proved to be more effective design method in the point of signal integrity.

Prediction of Transmission Error Using Dynamic Analysis of a Helical Gear (헬리컬기어의 동적해석을 통한 전달오차 예측)

  • Lee, Jeongseok;Yoon, Moonyoung;Boo, Kwangsuk;Kim, Heungseob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1005-1011
    • /
    • 2016
  • The fundamental reason for gear noise is transmission error. Transmission error occurs because of STE (static transmission error) and DTE (dynamic transmission error), while a pair of gears is meshing. These errors are generated by the deflection of the teeth and the friction on the surface of the teeth. In addition, the vibration generated by transmission error leads to excited bearings. The bearings support the shafts, and the noise is radiated after exciting the gear casing. The analysis of the contact stress in helical gear tooth flanks indicates that it is due to impact loading, such as the sudden engagement and disengagement of a gear. Stress analysis is performed for different roll positions, in order to determine the most critical roll angle. Dynamic analysis is performed on this critical roll position, in order to evaluate variation in stresses and tooth contact force, with respect to time. In this study, transmission error analysis was implemented on a spur and helical gear with involute geometry and a modified geometry profile. In addition, in order to evaluate the intensity of impact due to sudden engagement and significant backlash, the impact factor was calculated using the finite element analysis results of static and dynamic maximum bending stresses.

Human Exposures to Various Electromagnetic Forces : Measurement of Electromagnetic Force for Future Epidemiological Study (각종 전자파에 의한 인체의 노출 : 역학조사를 위한 전자파 측정)

  • Kim, Deok-Won;Ryu, Chang-Yong;Yoon, Hyung-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.191-200
    • /
    • 1995
  • Although air, water, and noise pollutions have been widely recognized, electromagnetic forces (EMF) hazard has been rarely recognized as a pollution and very little studies has been done in this country. Thus, in this study electromagnetic forces radiated by various home appliances, office machines, and communication equipments were measured and so were several places radiating strong EMF such as subway stations and electric substations. Among the home appliances microwave oven radiates lots of magnetic field and microwaves, and electric mattress does strong magnetic field. In video game room strong magnetic and considerable electric fields were measured. It was observed strong magnetic field inside of electric powered train and very strong magnetic and electric fields on some platforms. Hand-phone and car-phone radiate very hazardous level of microwaves to brain and that they rapidly come into wide use. In this study data base for various electric machines and places radiating strong EMFs were constructed and could be used for future epidemiological studies.

  • PDF

Automatic speech recognition using acoustic doppler signal (초음파 도플러를 이용한 음성 인식)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.74-82
    • /
    • 2016
  • In this paper, a new automatic speech recognition (ASR) was proposed where ultrasonic doppler signals were used, instead of conventional speech signals. The proposed method has the advantages over the conventional speech/non-speech-based ASR including robustness against acoustic noises and user comfortability associated with usage of the non-contact sensor. In the method proposed herein, 40 kHz ultrasonic signal was radiated toward to the mouth and the reflected ultrasonic signals were then received. Frequency shift caused by the doppler effects was used to implement ASR. The proposed method employed multi-channel ultrasonic signals acquired from the various locations, which is different from the previous method where single channel ultrasonic signal was employed. The PCA(Principal Component Analysis) coefficients were used as the features of ASR in which hidden markov model (HMM) with left-right model was adopted. To verify the feasibility of the proposed ASR, the speech recognition experiment was carried out the 60 Korean isolated words obtained from the six speakers. Moreover, the experiment results showed that the overall word recognition rates were comparable with the conventional speech-based ASR methods and the performance of the proposed method was superior to the conventional signal channel ASR method. Especially, the average recognition rate of 90 % was maintained under the noise environments.

Analysis of the Protection Ratio of GPS System in the Presence of RF Interference Radiated by UWB System (UWB 시스템의 간섭 신호에 대한 GPS 보호 비 분석)

  • Cho, In-Kyoung;Shim, Yong-Sup;Lee, Il-Kyoo;Cho, Hyun-Mook;Hong, Hyun-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.208-213
    • /
    • 2011
  • This paper analyzes potential interference effects of Ultra Wide Band(UWB) on Global Positioning System(GPS) which is providing safety service. For the interference analysis, positioning error method is used to determine the minimum protection distance to meet positioning error of 2.5 m below and Minimum Coupling Loss(MCL) method is used to determine the required protection ratio(I/N) from the protection distance of UWB transmitter and GPS receiver to meet positioning error of 2.5 m below. In a result, the minimum protection distance to meet positioning error of 2.5 m below was about 10 m and the protection ratio to meet positioning error 2.5 m below was -20 dB. The protection ratio proposed in this paper is the same value of the protection ratio of safety service proposed by ITU-R. The obtained protection ratio can be used for the protection standard of domestic GPS system for the safe of life service.

Development of a Ranging Inspection Technique in a Sodium-cooled Fast Reactor Using a Plate-type Ultrasonic Waveguide Sensor (판형 웨이브가이드 초음파 센서를 이용한 소듐냉각고속로 원격주사 검사기법 개발)

  • Kim, Hoe Woong;Kim, Sang Hwal;Han, Jae Won;Joo, Young Sang;Park, Chang Gyu;Kim, Jong Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2015
  • In a sodium-cooled fast reactor, which is a Generation-IV reactor, refueling is conducted by rotating, but not opening, the reactor head to prevent a reaction between the sodium, water and air. Therefore, an inspection technique that checks for the presence of any obstacles between the reactor core and the upper internal structure, which could disturb the rotation of the reactor head, is essential prior to the refueling of a sodium-cooled fast reactor. To this end, an ultrasound-based inspection technique should be employed because the opacity of the sodium prevents conventional optical inspection techniques from being applied to the monitoring of obstacles. In this study, a ranging inspection technique using a plate-type ultrasonic waveguide sensor was developed to monitor the presence of any obstacles between the reactor core and the upper internal structure in the opaque sodium. Because the waveguide sensor installs an ultrasonic transducer in a relatively cold region and transmits the ultrasonic waves into the hot radioactive liquid sodium through a long waveguide, it offers better reliability and is less susceptible to thermal or radiation damage. A 10 m horizontal beam waveguide sensor capable of radiating an ultrasonic wave horizontally was developed, and beam profile measurements and basic experiments were carried out to investigate the characteristics of the developed sensor. The beam width and propagation distance of the ultrasonic wave radiated from the sensor were assessed based on the experimental results. Finally, a feasibility test using cylindrical targets (corresponding to the shape of possible obstacles) was also conducted to evaluate the applicability of the developed ranging inspection technique to actual applications.

The Effect of Directivity of Antenna for the Evaluation of Abnormal Area Using Ground Penetrating Radar (지하투과레이더를 이용한 이상구간 평가 시 안테나 지향성의 영향)

  • Kang, Seonghun;Lee, Jong-Sub;Lee, Sung Jin;Park, Young-Kon;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.21-34
    • /
    • 2017
  • The ground penetrating radar (GPR) signal can be measured with different amplitudes according to the directivity, so the directivity of the antenna should be considered. The objective of this study is to investigate the directivity of antenna by analyzing the reflection characteristics of electromagnetic waves radiated from the antenna, and to evaluate effective range of angle that can inspect an abnormal area according to the directivity of antenna. For the measurement of the directivity, a circular metal bar is used as reflector and the signals are measured by changing the angle and the distance between reflector and antenna in the E- and H-plane. The boundary distance between the near field and the far field is determined by analyzing the amplitudes of reflected signals, and two points with different distances from each of near and far fields are designated to analyze radiation patterns in near and far fields. As a result of radiation pattern measurement, in the near field, minor lobes are observed at angle section at more than $50^{\circ}$ in both E- and H-plane. Therefore, antenna has the directivity for the direction of main lobe and minor lobes in near field. In the far field, antenna has the directivity for a single direction of main lobe because minor lobes are not observed. The amplitude of the signal reflected from the near field is unstable, but it can be distinguished from noise. Therefore, in the near field, the ground anomaly can be detected with high reliability. On the other hand, the amplitude of the signal reflected from the far field is stable, but it is hard to distinguish between reflected signal and noise because of the excessive loss of electromagnetic wave. The analyses of directivity in the near and the far fields performed in this study may be effectively used to improve the reliability of the analyses of abnormal area.