• Title/Summary/Keyword: Radiant Floor Heating

Search Result 81, Processing Time 0.027 seconds

Research on the actual condition of 'Under Floor Radiant Heating for Apartment Housing' (주거용건물의 바닥복사 난방방식에 대한 실태조사 연구)

  • Woo, Byung-Kwan;Lee, Sung;Kim, Sam-uel
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.81-86
    • /
    • 2007
  • The research analyzes the arrangement of boiler and hot water header, the method of radiator pipe setting, hot water supply control, hourly heating situation of each room for underfloor radiant heating systems in Korea and suggests an alternative to improve to efficient heating method. One of the best options for install position of hot water distributor is under kitchen sink which is center point of all rooms, according to previous research of the energy saving strategies. When the radiator pipes are arranged to each individual room instead of bedrooms through livingroom and kitchen, it has energy saving effects. For rooms without occupancy according to a time period, hot water supply method should be intermittent heating rather than continuous heating. For this intermittent heating method, individual control of hot water supply is more practical, and it can lead to massive energy savings. The intermittent heating system has time-lag, so it is more effective in energy saving with mild and comfort condition if the spaces are preheated by automatic control equipment prior to required time.

Analysis of Control Error Factors of a Thermal Output Experiment for Radiant Heating Panels (복사난방패널 방열량실험의 제어오차요인 분석)

  • Shin, Dae-Uk
    • Land and Housing Review
    • /
    • v.9 no.4
    • /
    • pp.33-42
    • /
    • 2018
  • As a radiant heating panel gets more popularity, the need to study on evaluation method of thermal output of the panel also becomes increasing. Generally, the chamber using method is applied to evaluate the thermal output through an experiment. However, the chamber using method cannot be used due to the limitations on space and cost. EN1264 addresses the test equipment to evaluate the thermal output by using simpler experimental setup, and introduces application method in detail. However, there is not enough description of control methods to meet the experiment condition, and it is difficult to meet this when practical experiment. Therefore, this paper analysed the control error factors of when the thermal output experiment is performed. When EN1264 method is applied to evaluate the thermal output of the radiant floor heating panel, the error factor which is caused by the characteristic of test equipment cannot be removed by the control methods of chamber using method. In addition, the error factor can be occurred at the element which is located out of the control system. These possible error factors are defined as the characteristic error factors.

Outdoor Reset Control based on Fuzzy Algorithm for Radiant Floor Heating System (퍼지 알고리즘을 기반으로한 바닥복사 난방시스템의 외기보상제어)

  • Choi, Jong-Yo;Baek, Jae-Ho;Kim, Eun-Tai;Lee, Hee-Jin;Park, Mig-Non
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1073-1074
    • /
    • 2008
  • This paper presents outdoor reset control based on fuzzy algorithm for radiant floor heating system. We construct fuzzy system under indoor temperature and outdoor temperature. Simulation is based on TRNSYS with MATLAB. MATLAB is calculating and decide heat source using fuzzy system. Energy efficiency of Fuzzy algorithm is analyzed in term of indoor by TRNSYS System.

  • PDF

A study on the comfort thermal environment by the Draft in floor panel heating system (바닥면복사난방에서 Draft에 의한 쾌적열환경에 관한 연구)

  • KyungHeeLee
    • Journal of the Korean housing association
    • /
    • v.7 no.2
    • /
    • pp.121-129
    • /
    • 1996
  • This study was to estimate how about various effects on the body thermal sensation as air velocity. clo. mean radiant temperature and resultant temperature are varied. The indoor thermal environment elements are measured under the five different of air velocity. Using the above considerations. the following results are obtained. ▶ The states, the air velocity under 0.5 m/s and 0.63 to 0.9 clo. were shown that the comfort zone of mean radiant temperature by 21.2~24.7C, the neutral point by 22.8C, the resultant temperature by 20.7-24.4C and the neutral point by 22.6C. ▶ On equal condition, the draft was occurred at a given air-velocity under 0.5m.s. It was also appeared the floor panel heating system affecting the body thermal sensation by the subject’s below-chest parts and the local discomfort by sensations on the feet and the knees.

  • PDF

An Evaluation on the Thermal Performance of the Room Control System for Radiant Floor Heating (바닥복사난방의 실별제어시스템에 관한 열성능 평가)

  • 석호태;김오봉;조영흠;김광우;여명석
    • Journal of the Korean housing association
    • /
    • v.14 no.5
    • /
    • pp.75-82
    • /
    • 2003
  • In this study, the thermal performance of the room control system is analyzed in terms of control performance, potential for coil expansion and energy consumption through experiments comparing the individual room control system and an existing system. The results of this study show that the existing system is not able to supply design water flow rate and does not accurately maintain the set point temperature in each room. However, the individual room control system can set a room air temperature for each room, for it is able to supply design water flow and accurately control the set point temperature in each room and can reduce the energy consumption compared to the existing system. Moreover, the individual room control system can reduce the number of coil division zone and facilitates the construction process, because it can extend the length of the coil division.

A Study on the Control of Water Flow and Water Temperature in the Radiant Cooling System through Simulations (시뮬레이션을 통한 바닥복사냉방 시스템의 공급유량 및 냉수온도 제어에 관한 연구)

  • 김용이;윤혜림;여명석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.532-540
    • /
    • 2001
  • The objectives of this study are to analyze the control variables according to condensation occurrence, to find the range in floor surface temperature and frequency of condensation, and to evaluate the control methods through simulations when the radiant heating system is used for cooling. Through the simulation analysis the control methods such as on/off control, variable flow control and outdoor reset with indoor temperature feedback control are evaluated and compared. The results show that the lowest floor surface temperature is around $23^{\circ}C$, the surface condensation can be prevented by controlling indoor humidity within 20g/kg(DA0, and that outdoor reset with indoor temperature feedback control is more appropriate than on/off control and variable flow control with regard to prevention of the condensation and thermal comfort.

  • PDF

A Calculation Method on Heat Flux from Ondol Floor Surface (온돌면(溫突面)의 방열량(放熱量) 산정방법(算定方法)에 관한 연구(硏究))

  • Sohn, Jang Yeul;Ahn, Byung Wook;Pang, Seung Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.173-181
    • /
    • 1989
  • Until recently there was a lack of reliable performance data for the design and operation of Ondol heating systems. This paper presents a calculation method on heat flux from Ondol floor surface. Total heat flux from floor consists of radiation and convection component. In order to analyse the characteristics of both radiation and convection heat flux, each surface temperature is measured and several temperatures near each wall are measured vertically and horizontally in a practical Ondol heating space. Radiation heat flux is calculated and analysed by Gebhart's Absorption Factor Method with the consideration of instantaneous radiant exchanges. Convection heat output is derived from the vertical temperature profiles near floor. The vertical temperature profiles could be expressed by nonlinear regression equation models and convection coefficients could be estimated by the equations. As a result, radiation, convection and total heat flux are suggested by the expression of difference between floor surface and room air temperature.

  • PDF

Improvement of Fire Resistance and Impact Sound Insulation Performance for Timber Framed Floor by Installation of Isolated Ceiling (분리된 천정의 설치를 통한 목구조 바닥의 내화성능 및 충격음 차단성능 향상)

  • Park, Joo-Saeng;Kim, Se-Jong;Lee, Sang-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.426-432
    • /
    • 2013
  • Fire resistance and impact sound insulation tests were performed for a floor assembly, of which stiffness was reinforced by shortening the span of floor joists by installing glulam beam additionally in the middle or one thirds of the original span, and which an additional ceiling component was installed apart from floor structure. By applying the isolated ceiling, timber framed floor showed 1 hour of fire resistance even in case that dead load was increased by considering cement mortar layer for radiant floor heating. Insulation performance against light and heavy impact sound was improved significantly by applying the sound absorbing layer of big mass and high elasticity in addition to the stiffness improvement and isolated ceiling.

  • PDF