• Title/Summary/Keyword: Radial-Inflow Turbine

Search Result 14, Processing Time 0.018 seconds

The development of a preliminary designing program for ORC radial inflow turbines and the design of the radial inflow turbine for the OTEC (ORC 반경류터빈의 예비설계프로그램 개발 및 OTEC용 반경류터빈의 설계)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.276-284
    • /
    • 2014
  • The purpose of this study is to establish the designing method of ORC(Organic Rankine Cycle) radial inflow turbines. RTDM(Radial Turbine Design Modeler) Ver.2.1 which is a preliminary design program of radial inflow turbines was developed to achieve this purpose. The 200kW-class radial inflow turbine for OTEC(Ocean Thermal Energy Conversion) was designed by using the RTDM Ver.2.1 and CFD(Computational Fluid Dynamics) simulation was performed to verify the accuracy of RTDM Ver.2.1. With the result of simulation, the accuracy of RTDM Ver.2.1 was almost 94.6% based on the designed total enthalpy drop of the radial inflow turbine. Strategy of adjusting the mass flow rate was adopted on this study to satisfy the requirements of its power and rotor outlet's conditions for the designed radial inflow turbine. The mass flow rate was consequently increased to 21.2 kg/s for the designed 200kW-class radial inflow turbine for OTEC, and then Total to total and Total to static efficiency are 89.8% and 85.36% respectively.

Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32 (R32를 이용한 100kW급 해양온도차발전용 반경류터빈의 설계)

  • Kim, Do-Yeop;Kim, You Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1101-1105
    • /
    • 2014
  • Ocean Thermal Energy Conversion(OTEC) which uses the temperature difference between warm surface sea-water and cold deep sea-water to produce electric power is the promising technology. OTEC is able to be utilized as the $CO_2$ reducing technology by using the consistent temperature differential, while the system efficiency is very low. Thus, the design and development of a efficient turbine is essential to improve the system efficiency for OTEC. In this study, a 100kW-class radial inflow turbine using R32 was designed for OTEC and this turbine's performance was estimated by analysis of CFD. According as the simulation results, turbine's geometry was corrected. The radial inflow turbine satisfying the requirements is designed by the repeated attempts.

CFD Performance Analysis and Design of a 8kW Class Radial Inflow Turbine for Ocean Thermal Energy Conversion Using a Working Fluid of Ammonia (암모니아 작동유체를 이용한 해수온도차발전용 8kW급 구심터빈의 설계 및 CFD 성능해석)

  • Mo, Jang-Oh;Cha, Sang-Won;Kim, You-Taek;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1030-1035
    • /
    • 2012
  • In this research, we analysed design and CFD analysis of an inflow radial turbine for OTEC with an output power of 8kW using an working fluid of ammonia. The inflow radial turbine consists of scroll casing, vain nozzle with 18 blade numbers and rotor blade with 13 blade numbers. Mass flow rate, and inlet temperature are 0.5kg/s and $25^{\circ}C$ respectively, and variable rotational speeds were applied between 12,000 and 36,000 with 3,000 rpm intervals. As the results according to the rotational speeds, the designed speed is 24,000 rpm where maximum efficiency exists. The maximum efficiency and output power are 88.66% and 8.52kW, respectively. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power under various working material conditions.

Numerical Analysis of Flow in Radial Turbine (Effects of Nozzle Vane Angle on Internal Flow)

  • OTSUKA, Kenta;KOMATSU, Tomoya;TSUJITA, Hoshio;YAMAGUCHI, Satoshi;YAMAGATA, Akihiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 2016
  • Variable Geometry System (VGS) is widely applied to the nozzle vane for the radial inflow turbine constituting automotive turbochargers for the purpose of optimizing the power output at each operating condition. In order to improve the performance of radial turbines with VGS, it is necessary to clarify the influences of the setting angle of nozzle vane on the internal flow of radial turbine. However, the experimental measurements are considered to be difficult for the flow in radial turbines because of the small size and the high rotational speed. In the present study, the numerical calculations were carried out for the flow in the radial turbine at three operating conditions by applying the corresponding nozzle vane exit angles, which were set up in the experimental study, as the inlet boundary condition. The numerical results revealed the characteristic flow behaviors at each operating condition.

Influence of Performance and Internal Flow of a Radial Inflow Turbine with Variation of Vane Nozzle Exit Angles (베인노즐 출구각도에 따른 100kW급 구심터빈의 성능 및 내부유동의 영향)

  • Mo, Jang-Oh;Kim, You-Taek;Oh, Cheol;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.757-764
    • /
    • 2011
  • In this study, we analysed the influence of the performance and inflow flow of a radial inflow turbine with the variation of vane nozzle exit angles for a 100kW class turbine applicable in the waste heat recovery system. For this, three-dimensional CFD analysis was performed using commercial code called ANSYS Fluent 12.1. As the vane nozzle exit angle was more increased the reattachment region near blades of the vane nozzle got smaller, and also the Mach number at vane nozzle exit was observed to be 1 due to the effect of the cross section reduction. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power.

Numerical Analysis of Tip Clearance Effects in a Micro Radial Inflow Turbine

  • Watanabe, Naoki;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.622-627
    • /
    • 2004
  • There are many difficulties in realizing Ultra-micro gas turbine system. Among them, the effects of tip clearance upon the micro turbine flowfield are discussed in this paper. The flowfield was investigated numerically with the Reynolds-averaged three-dimensional thin-layer Navier-Stokes equations. Calculations were conducted with clearance height from 0% to 10% of the passage height. Leakage mass flow and deterioration of efficiency are proportional to the clearance height for the clearance height larger than 4%. However, in the case of 2% clearance, leakage flow is significantly reduced due to relative motion of the casing and as a result deterioration of efficiency is very small. It is difficult to control tip clearance in micro turbines, but the results of this study indicate that if the clearance height is controlled within a few per-cent of passage height, deterioration of stage performance will be small.

  • PDF

A Study on the Prediction of Performance and Simulation in a Radial inflow-Turbine for Exhaust Gas Turbochargers (과급기 구동용 반경류 배기터빈의 수치해석과 성능예측)

  • Jeong, Hyo-Min;Koh, Dae-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.220-228
    • /
    • 1993
  • This paper presents a description and evaluation of a detailed mathematical simulation for the steady and unsteady flow in a radial inflow-turbine which is most frequently used, at present, for exhaust gas turbochargers of internal combustion engines. As a method of computation, the two-step differential Lax-Wendroff method and the characteristic method were used. The turbine characteristics, the mass flow rate, the power output and fluid movements at the turbine scroll inlet were compared with the experiment data. The results of the simulation were in good agreement with experimental values under both steady and unsteady flow conditions.

  • PDF

Preliminary design and performance analysis of a radial inflow turbine (유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.735-743
    • /
    • 2015
  • The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

Design and Analysis of a Radial Turbine for Ocean Thermal Energy Conversion (해양온도차발전용 반경류 터빈의 설계 및 해석)

  • Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • The preliminary design of a radial inflow turbine using R134a as the working fluid at 5 kW of power for application to ocean thermal energy conversion (OTEC) is performed to obtain the trends for the efficiency and geometrical dimensions of the turbine. Using input conditions that included a turbine inlet temperature of $25^{\circ}C$, an outlet static pressure of 4.9 bar, and a mass flow rate of 1.16 kg/s, the results of a mean flow analysis show the major dimensions of the turbine, along with an angular velocity of 12,820 rpm. Based on these results, a three-dimensional turbine model is constructed for a computational fluid dynamics (CFD) analysis. The flow characteristics inside the turbine, including the volute and nozzle, are investigated using the CFD software ANSYS CFX. For a pertinent number of nozzle guide vanes, ranging from 10 to 15, the turbine efficiency was higher than 80%, with the highest efficiency shown by a nozzle with 15 guide vanes.

Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle (유기랭킨사이클용 반경류 터빈의 성능 및 구조 해석)

  • Kim, Do-Yeop;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • The turbine is an important component and has a significant impact on the thermodynamic efficiency of the organic Rankine cycle. A precise preliminary design is essential to developing efficient turbines. In addition, performance analysis and structural analysis are needed to evaluate the performance and structural safety. However, there are only a few exclusive studies on the development process of the radial inflow turbines for the organic Rankine cycle (ORC). In this study, a preliminary design of the ORC radial inflow turbine was performed. Subsequently, the performance and structural analysis were also carried out. The RTDM, which was developed as an in-house code, was used in the preliminary design process. The results of the performance analysis were found to be in good agreement with target performances. Structural analysis of the designed turbine was also carried out in order to determine whether the material selection for this study is suitable for the flow conditions of the designed turbine, and it was found that the selected aluminum alloy is suitable for the designed turbine. However, the reliability of the preliminary design algorithms and numerical methods should be strictly verified by an actual experimental test.