• Title/Summary/Keyword: Radial stress

Search Result 419, Processing Time 0.028 seconds

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Determination of Trend of a Radial Distribution of Moisture Content within a Log Cross Section by Oven-Drying of Circumferential Slices(II) - For some of domestic softwoods - (원주상(圓周狀)슬라이스의 오-븐건조법에 의한 함수율의 원반(圓盤)내 방사방향분포 추이 평가 (II) - 주요 국산 침엽수재를 중심으로 -)

  • Lee, Nam-Ho;Li, Chengyuan;Choi, Jun-Ho;Hwang, Ui-Do;Jin, Young-Moon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • This study was carried out to investigate a radial distribution of moisture contents (MCs) within a log cross section (LC) during oven-drying of 3 mm-thick circumferential slices cut from several domestic softwoods LCs.For Korean red pine, drying rate of sapwood slices during oven-drying represented much higher values than that of heartwood slices, and so sapwood with higher green MC early reached below fiber saturation point (FSP) rather than heartwood did. However, this distribution of moistures did not last for long duration. For Japanese larch, green MC of sapwood was approximately three times higher than that of heartwood. This similar distribution in MC was lasted until about 20% average MC. The MC was around uniform throughout the sapwood of Ginkgo when green and during oven-drying, although it was somewhat fluctuated. For Japanese cedar, the heartwood with so low moistures around FSP would begin to shrink from the beginning stage of drying, but the sapwood above hygroscopic MC prevents the heartwood from shrinking, and consequently, the heartwood or the transition wood goes into tension stress. The results for Japanese cypress showed that the green MCs of the sapwoods were much lower than those for heartwoods, and then this trend was continued until about 20% in average MC. For Chinese thuja, the green MCs of sapwoods were about 2 times as high as those of heartwood, but this along the radial gradient in MC rapidly became gentle during oven-drying.

Exploration of suitable rice cultivars for close mixed-planting with upland-adapted cereal crop

  • Shinohara, Nodoka;Shimamoto, Hitoshi;Kawato, Yoshimasa;Wanga, Maliata A.;Hirooka, Yoshihiro;Yamane, Koji;Iijima, Morio
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.304-304
    • /
    • 2017
  • In semi-arid countries such as Namibia, the flooding unexpectedly happens in a rainy season, causing losses in the yield of upland-adapted cereal crop. In flooding conditions, rice roots sequentially form aerenchyma and a barrier to radial oxygen loss (ROL), and oxygen is released into the rhizosphere near the root tips. Iijima et al. (2016) and Awala et al. (2016) reported that close mixed-planting with rice can mitigate the flood stress of co-growing upland-adapted cereal crop by modifying their rhizosphere microenvironments via the oxygen released from the rice roots. Moreover, by using the model system of hydroponic culture, it was confirmed that oxygen from rice roots was transferred to co-growing upland-adapted cereal crop in close mixed planting system (Kawato et al., 2016). However, it is not sure whether the ability of oxygen release varies among rice cultivars, because Kawato et al. (2016) used only one japonica cultivar, Nipponbare (Oryza sativa). The objective of this study was to compare the ability of oxygen release in rhizosphere among rice cultivars. The experiment was conducted in a climate chamber in Kindai University. We used 10 rice cultivars from three different rice species (O. sativa (var. japonica (2), var. indica (3)), Oryza glaberrima Steud. (2) and their interspecific progenies (3)) to compare the ability of oxygen release from the roots. According to the method by Kawato et al. (2016), the dissolved oxygen concentration of phase I (with shoot) and phase II (without shoot) were measured by a fiber optic oxygen-sensing probe. The oxygen released from rice roots was calculated from the difference of the measurements between phase I and phase II. The result in this study indicated that all of the rice cultivars released oxygen from their roots, and the amount of released oxygen was significantly correlated with the above-ground biomass (r = 0.710). The ability of oxygen release (the amount of the oxygen release per fresh root weight) of indica cultivars (O. sativa) tended to be higher as compared with the other cultivars. On the other hand, that of African rice (O. glaberrima) and the interspecific progenies tended to be lower. These results suggested that the ability of oxygen release widely varies among rice cultivars, and some of indica cultivars (O. sativa) may be suitable for close mixed-planting to mitigate flood stress of upland-adapted cereal crop.

  • PDF

Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling (폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구)

  • Ryu, Sae-Hee;Park, Jong-Ha;Lee, Sun-Yong;Lee, Jae-Sung;Lee, Jae-Chul;Ahn, Sung-Hoon;Kim, Dae-Keun;Chae, Jae-Hong;Riu, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.

Polymerization Shrinkage Behavior Measured by Digital Image Correlation for Methacrylate-based and Silorane-based Composites During Dental Restoration (디지털 이미지 상관법을 이용한 Methacrylate기질과 Silorane기질 복합레진의 치아 수복 시 중합수축거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • The polymerization shrinkage behavior of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was measured using digital image correlation method. The stress distribution on the surface of specimen was calculated by finite element analysis with equivalent elastic modulus and was compared with the measured shrinkage distribution. Camera images were monitored by a CCD camera during and after the irradiation of light. As a result of the DIC analysis, a non-uniform shrinkage distribution was observed in both composite resins, and the resin core inside the ring specimen had free flowability, leading to in greater shrinkage strain than the resin/ring interfacial region. It was observed that as the distance from the center of the resin increased, the radial average shrinkage strain decreased. The radial average shrinkage strain during light irradiation occurred to be 33% for P90 and 57% for AP-X of the entire strain at the end of the test. The shrinkage behavior of P90 and AP-X was measured to be significantly different from each other during light irradiation. In the resin near the resin/ring interface, it was confirmed that the tensile strain rapidly formed to increase after light irradiation, causing a tensile stressed, interface weak.

The Effects of Climate Factors on the Tree Ring Growth (기후인자가 임목의 연륜생장에 미치는 영향)

  • Yoon, Mihae;Lee, Woo-Kyun;Kim, Moonil
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.255-267
    • /
    • 2013
  • This study aims to reveal the relationship between major climatic factors and radial growth in Siu-ri, NamYangJuSi, Kyeonggido. To identify tree growth responses to climatic variation, we used correlation analysis after standardization and cross-dating of tree ring growth. We use the climatic data(monthly mean, minimum, maximum temperature and precipitation) from September of previous year to August of current year. In terms of relationship between mean, minimum, maximum temperature and tree ring growth, negative correlations were observed in September and October of the previous year. In case of Quercus mongolica, negative relationship were appeared in December of the previous year, January and February of present year. When it comes monthly maximum temperature, August and September of present year was negatively correlated with radial growth in the case of Pinus densiflora. We can conclude that reduced soil moisture due to high temperatures causes a water stress that stunts tree growth. In contrast, there are positive correlations in March of present year. These results suggest that high temperatures in March appear to prolong the growing season. Growth was positively correlated with precipitation from October to December of previous year and from May to September of present year. The results suggest that the smooth water supply from precipitation can promote the tree growth.

Comparative Study on Mechanical Properties and Dimensional Stability of Staypak and Wood-Polymer Composites from Populus alba × P. Glandulosa wood (현사시나무로 제조(製造)된 열압축목재(熱壓縮木材)와 목재(木材)-고분자(高分子) 복합체(複合體) 재질(材質)의 비교연구(比較硏究))

  • Pak, Sang-Bum;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.14-34
    • /
    • 1985
  • One of the techniques for altering the properties of wood that has received considerable attention in the last twenty years is the formation of a wood-polymer composite (WPC) by irradiation and heat-catalyst polymerization of a monomer incorporated into the wood matrix. Wood-polymer composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC and Staypak. The species examined was Hyunsasi-Namoo (Populus alba ${\times}$ P. glandulosa) which had not been utilized yet. Methylmethacrylate (MMA) as monomer, benzoyl peroxide (BPO) as initiator and methyl alcohol as bulking agent were used. The monomer containing BPO was impregnated into wood pieces by the dipping and the vacuum process for 2 hours. After impregnation, the treated samples were polymerized on the hot press with pressure and heat-catalyst methods. The results obtained were summarized as follows 1. The monomer loading into wood by the dipping process was 12.13 percent and 29.99 percent by the vacuum. The polymer loading into wood by the dipping process was 6.79 percent and 15.44 percent by the vacuum. 2. Comparing with Staypak, antishrink efficiency (ASE) of WPC was 12.5 to 13.6 percent on the radial direction and 14.70 to 18.63 percent on the tangential. Antiswelling efficiency (AE) was 14.40 to 17.22 percent on the radial direction and 17.18 to 42.1 8 to 42.14 percent on the tangential. Reduction in water absorptivity (RWA) was 8.19 to 15.5 percent. As a whole, the vacuum process was better than the dipping. 3. The specific gravity of control, Staypak and WPC were 0.44, 0.66 and 0.61 to 0.62, respectively. 4. In the bending strength test, the strength in case that the load direction is on the radial surface was greater than that which the load direction is on the tangential. 5. Increasing rate of stress at proportional limit in compression perpendicular to grain was 72.26 percent in case of WPC by the dipping process, 78.93 percent by the vacuum and 99.09 percent in case of Staypak.

  • PDF

Modeling of Wrist Discomfort with External Loads (손목 자세와 외부 부하에 따른 손목 불편도 모델링)

  • Choi, Kwang-Soo;Park, Jae-Kyu;Jung, Eui-S.;Choe, Jae-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.11-27
    • /
    • 2005
  • The objectives of this study are to analyze representative wrist postures while using hand tools and parts at general assembly processes, to evaluate perceived discomfort on the wrist when external loads are present, and to suggest an evaluation and prediction model of perceived discomfort. Sixteen subjects participated in an experiment to appraise perceived discomfort. Three types of the wrist postures with five levels of non-neutralities were analyzed when five levels of external load were applied to each posture. The ANOVA results showed that the perceived discomfort of wrist postures was significantly affected by both the wrist posture and external load (p$<$0.001). It was also shown that some of the interactions between external loads and the wrist postures(Flexion/$Extension^*$Load, Flexion/$Extension^*$supination/pronation, ulnar/radial $deviation^*$supination/pronation) were significant(p$<$0.001). The result implies that a new posture classification scheme for workload assessment methods may be needed to reflect such effects of external load and wrist posture. A regression model of perceived discomfort was developed with respect to wrist posture and external load from the experimental data. A subsequent experiment revealed that the correlation coefficient between the predicted values of perceived discomfort from the model and the actual values obtained from the experiment was about 0.98. It is expected that the results help to properly estimate the body stress resulting from worker's postures and external loads and can be used as a valuable design guideline to analyze potential hazard of musculoskeletal diseases in industry.

AN EXPERIMENTAL STUDY ON THE FATIGUE FRACTURE OF LAMINATE PORCELAIN (치과용 라미네이트 도재의 피로파괴에 관한 실험적 연구)

  • Park Charn-Woon;Bae Tae-Sung;Lee Sang-Don
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.482-505
    • /
    • 1993
  • The purpose of this study was to evaluate the fracture characteristics and the effect of resin bonding of laminate porcelain. In order to characterize the indentation-induced crack, Young's moduli and characteristic indentation dimensions were measured. The fatigue life under three point flexure test was measured using the electro-dynamic type fatigue machine, and the crack propagation with thermocycling was investigated on the condition of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ bath. The Vickers indentation pattern and the fracture surface were examined by an optical microscope and a scanning electron microscope (SEM). The results obtained were summarized as follows ; 1. Young's moduli(E) of the laminate porcelain and the resin cement used in this experiment were $62.56{\pm}3.79GPa$ and $15.01{\pm}0.12GPa$, respectively. 2. The initial crack size of the laminate porcelain was $69.19{\pm}5.94{\mu}m$ when an indentation load of 9.8N was applied, and the fracture toughness was $1.065{\pm}0.156MPa\;m^{1/2}$. 3. The fatigue life of laminate porcelain showed the constant fracture range at the stress level 27.46-35.30MPa. 4. When a cyclic flexure load was applied, the fatigue life of resin-bonded laminate porcelain was more decreased than that of laminate porcelain. 5. When a thermocycling was conducted, the crack growth rate of resin-bonded laminate porcelain was more increased than that of laminate porcelain. 6. Fracture surface showed the radial crack, the lateral crack, and the macroscopic crack branching region beneath the plastic deformation region when an indentation load of 9.8N was applied.

  • PDF

Study on Consolidation Behaviors of Soft Ground by Plastic Board Drain Using Model Tests (실내모형실험에 의한 Plastic Board Drain이 적용된 연약지반의 압밀거동에 관한 연구)

  • You, Seung-Kyong;Hong, Won-Pyo;Yoon, Gil-Lim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • Accurate prediction of consolidation behaviors of the soft ground improved by plastic board drains is not easy because the consolidation characteristics of the improved ground has not been fully elucidated yet. The shape of drains is one of the most important factors which affect the consolidation characteristics of the improved ground. In this paper, a series of model consolidation tests of soft clay ground improved by plastic board drain were carried out, in order to investigate the effect of both plastic board width and stress level on consolidation characteristics of the improved ground. As the results, behaviors of both settlement and excess pore pressure dissipation were elucidated. Also, the non-uniform distribution of water content in the model ground was obtained. Then, in order to investigate the effect of vertical drainage on the consolidation behavior in the model tests, the comparison between experimental consolidation behaviors and Barron's theoretical ones were carried out. As the results, it was elucidated that the consolidation behavior in the model tests was affected not only by radial drainage but also by vertical drainage.

  • PDF