• 제목/요약/키워드: Radial motion

검색결과 305건 처리시간 0.02초

Empirical estimation of daily artifact of HMI Doppler velocities in the umbral region

  • Cho, Il-Hyun;Cho, Kyung-Suk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제39권1호
    • /
    • pp.71.1-71.1
    • /
    • 2014
  • To investigate physical properties of Solar pores, we use SDO/HMI data from 2010 to 2013. For this, we select single and isolated pores from the active region (Axx, Bxo, Bxi and Bxc-type) listed in Solar Region Summary. Pore is defined by connected pixels satisfying the intensity threshold from pixel of minimum intensity. We try to obtain area, intensity, magnetic field, and Doppler velocity of pores from HMI data. After removing the effects of orbital motion of the SDO satellite and differential rotation of the Sun, we identify that significant daily variations of Doppler velocity with non-zero ordinates still remain in the umbral region, and the artifact is quite dependent on the strength of magnetic field and radial component of velocity of SDO satellite. In this study we develope empirical model to remove the artifact. A preliminary result on the elimination of the artifact will be presented.

  • PDF

An Autonomous Mobile Robot Control Method based on Fuzzy-Artificial Immune Networks and RBFN (퍼지-인공면역망과 RBFN에 의한 자율이동로봇 제어)

  • 오홍민;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제52권12호
    • /
    • pp.679-688
    • /
    • 2003
  • In order to navigate the mobile robots safely in unknown environments, many researches have been studied to devise navigational algorithms for the mobile robots. In this paper, we propose a navigational algorithm that consists of an obstacle-avoidance behavior module, a goal-approach behavior module and a radial basis function network(RBFN) supervisor. In the obstacle-avoidance behavior module and goal-approach behavior module, the fuzzy-artificial immune networks are used to select a proper steering angle which makes the autonomous mobile robot(AMR) avoid obstacles and approach the given goal. The RBFN supervisor is employed to combine the obstacle-avoidance behavior and goal-approach behavior for reliable and smooth motion. The outputs of the RBFN are proper combinational weights for the behavior modules and velocity to steer the AMR appropriately. Some simulations and experiments have been conducted to confirm the validity of the proposed navigational algorithm.

A Study on Roughness Characteristic about Rotational Accuracy Variation (스핀들의 회전 정밀도에 따른 표면 거칠기 특성 연구)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제18권1호
    • /
    • pp.110-115
    • /
    • 2009
  • In general, the radial error motion of a machine tool spindle system is effected on the accuracy of the parts to be made. This paper presents in milling process an investigation into spindle rotational accuracy effects on surface roughness of processing parts. We experimented the effects on spindle rotational accuracy in milling process by cutting AL 7075 workpiece at various rotational speed. In order to analyze the effects of rotational accuracy on surface roughness, we proposed the method using iSIGHT's RBF Approximation. The proposed method can be used fur anticipating the surface roughness when some spindle rotational accuracy experiments could be done in milling process.

Design and Test of Vacuum Rotary Arc Gap Switch (Vacuum Rotary Arc Gap Switch의 설계 및 시험)

  • 서길수;황동원;이태호;황리호;김희진;이홍식;임근희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제52권1호
    • /
    • pp.19-24
    • /
    • 2003
  • Design and test results of a VRAG(Vacuum Rotary Arc Gap) switch were presented. To control the damage of electrodes caused by the vacuum arc, Lorentz's force by the radial magnetic field between spiral electrodes was used to rotate the vacuum uc. VRAG switch electrodes were made of the material of CuCr and OFHC. Gap distance between two spiral type electrodes for the rotation of the arc discharge is 8, 10, 12mm. In the cathode, one trigger electrode was inserted into each spiral wing. Normal operation of the VRAG switch was confirmed with 10.6[$mutextrm{s}$]of trigger delay and 2~3[$mutextrm{s}$] of the jitter time. The speed of the vacuum arc was measured to be 0.6 ~ 1[km/s] by a motion analyzer.

Input Shaper Design for Tower Crane in Consideration of Nonlinear Coupled Motions (타워크레인의 비선형 연성 운동 특성을 고려한 입력성형기 설계)

  • Kim, Byung-Gyu;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제26권9호
    • /
    • pp.88-95
    • /
    • 2009
  • Input shaping has been a very effective control method for reducing payload swing in industrial bridge and gantry cranes. However, conventional input shapers often degrade performance when applied to tower cranes because of the nonlinear coupled dynamics between rotational and radial motions in tower cranes. To alleviate this problem, a new input shaper for tower cranes is developed by means of dynamic modeling, analysis and optimization. This work investigates the tower crane dynamics along with parameters of the tower crane varied. A performance index for input shaper design is proposed so as to reduce the coupled residual vibration of a tower crane using only rotational motion of tower crane. The proposed new input shaper is verified to be effective through simulations and experiments.

Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts Up (센터 베어링으로 지지된 추진축을 갖는 구동계의 차량 출발시 진동해석)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제12권12호
    • /
    • pp.929-934
    • /
    • 2002
  • This paper considers the vibration Problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we developed an one d.o.f model which describes the radial motion of the center bearing. We found out that the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the feint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method

  • Ghadiri Rad, Mohammad Hossein;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.293-304
    • /
    • 2019
  • In the present paper, the element free Galerkin (EFG) method is developed for geometrically nonlinear analysis of deep beams considering small scale effect. To interpret the behavior of structure at the nano scale, the higher-order gradient elasticity nonlocal theory is taken into account. The radial point interpolation method with high order of continuity is used to construct the shape functions. The nonlinear equation of motion is derived using the principle of the minimization of total potential energy based on total Lagrangian approach. The Newmark method with the small time steps is used to solve the time dependent equations. At each time step, the iterative Newton-Raphson technique is applied to minimize the residential forces caused by the nonlinearity of the equations. The effects of nonlocal parameter and aspect ratio on stiffness and dynamic parameters are discussed by numerical examples. This paper furnishes a ground to develop the EFG method for large deformation analysis of structures considering small scale effects.

Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver

  • Kim, Yoon-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2019
  • Dynamic contrast enhanced (DCE) magnetic resonance (MR) imaging plays an important role in non-invasive detection and characterization of primary and metastatic lesions in the liver. Recently, efforts have been made to improve spatial and temporal resolution of DCE liver MRI for arterial phase imaging. Review of recent publications related to arterial phase imaging of the liver indicates that there exist primarily two approaches: breath-hold and free-breathing. For breath-hold imaging, acquiring multiple arterial phase images in a breath-hold is the preferred approach over conventional single-phase imaging. For free-breathing imaging, a combination of three-dimensional (3D) stack-of-stars golden-angle sampling and compressed sensing parallel imaging reconstruction is one of emerging techniques. Self-gating can be used to decrease respiratory motion artifact. This article introduces recent MRI technologies relevant to hepatic arterial phase imaging, including differential subsampling with Cartesian ordering (DISCO), golden-angle radial sparse parallel (GRASP), and X-D GRASP. This article also describes techniques related to dynamic 3D image reconstruction of the liver from golden-angle stack-of-stars data.

Extra-tidal stars around globular clusters NGC 5024 and NGC 5053 and their chemical abundances

  • Chun, Sang-Hyun;Lee, Jae-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제43권2호
    • /
    • pp.40.2-40.2
    • /
    • 2018
  • NGC 5024 and NGC 5053 are among the most metal-poor globular clusters in the Milky Way. Both globular clusters are considered to be accreted from dwarf galaxies (like Sagittarius dwarf galaxy or Magellanic clouds), and common stellar envelope and tidal tails between globular clusters are also detected. We present a search for extra-tidal cluster member candidates around these globular clusters from APOGEE survey data. Using 20 chemical elements (e.g., Fe, C, Mg, Al) and radial velocities, t-distributed stochastic neighbour embedding (t-SNE), which identifies an optimal mapping of a high-dimensional space into fewer dimensions, was explored, and we find that globular cluster stars are well separated from the field stars in 2-dimensional map from t-SNE. We also find that some stars selected in t-SNE map are placed outside of the tidal radius of the clusters. The proper motion of stars outside tidal radius is also comparable to that of globular clusters, which suggest that these stars are tidally decoupled from the globular clusters. We manually measure chemical abundances for the clusters and extra-tidal stars, and discuss the association of extra-tidal stars with the clusters.

  • PDF

Molecular Dynamics Simulation Studies of a Model System for Liquid Crystals Consisting of Rodlike Molecules in NPT Ensemble

  • Lee, Chang Jun;Sim, Hun Gu;Kim, Un Chun;Lee, Song Hui;Park, Hyeong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권3호
    • /
    • pp.310-316
    • /
    • 2000
  • Molecular dynamics simulation studies for thermotropic liquid crystalline systems conposed of rodlike molecules with 6 Lennard-Jones interaction sites wre performed in NPT ensemble. Within the range of temperature studied, the system exhibited isotropic and smectic phase. For the characterization of the smectic phase, we examined the structure of the liquid crystalline phase via the radial distribution function, its longitudinal and transverse components to the director, and other orientational correlation function, its longitudinal and transverse components to the director, and other orientational correlation functions. In the smectic A phase, our results showed a large anisotropy in translational motion (i.e.,$D_⊥ >> D_∥$), and the decay of the collective orientational correlation function of rank two became slower than that of the single particle orientational correlation function of rank one. Comments on the spontaneous growth of orientational order directly from the isotropic phase are given.