• Title/Summary/Keyword: Radial motion

Search Result 305, Processing Time 0.06 seconds

A Study for the Measurement of a fluid Density in a ripe Using Elastic Waves

  • Kim, Jin-Oh;Hwang, Kyo-Kwang;Bau, Haim-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.583-593
    • /
    • 2003
  • The effect of liquid confined in a pipe on elastic waves propagating in the pipe wall was studied theoretically and experimentally. The axisymmetric motion of the wave was modeled with the cylindrical membrane shell theory. The liquid pressure satisfying the axisymmetric wave equation was included in the governing equation as a radial load. The phase speed of the wave propagating in the axial direction was calculated, accounting for the apparent mass of the liquid. Experiments were performed in a pipe equipped with ring-shaped, piezoelectric transducers that were used for transmitting and receiving axisymmetric elastic waves in the pipe wall. The measured wave speeds were compared with the analytical ones. This work demonstrates the feasibility of using pipe waves for the determination of the density and, eventually, the flow rate of the liquid in a pipe.

VELOCITY ANALYSIS OF M13 BY MAXIMUM LIKELIHOOD METHOD

  • Oh, K.S.;Lin, D. N. C.
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 1992
  • We present new approach to analysis of velocity data of globular clusters. Maximum likelihood method is applied to get model parameters such as central potential, anisotropy radius, and total mass fractions in each mass class. This method can avoid problems in conventional binning method of chi-square. We utilize three velocity components, one from line of sight radial velocity and two from proper motion data. In our simplified scheme we adopt 3 mass-component model with unseen high mass stars, intermediate visible stars, and low mass dark remnants. Likelihood values are obtained for 124 stars in M13 for various model parameters. Our preferred model shows central potential of $W_o=7$ and anisotropy radius with 7 core radius. And it suggests non-negligible amount of unseen high mass stars and considerable amount of dark remnants in M13.

  • PDF

Biologic Arthroplasty of Elbow with Free Metatarso-Phalangeal Joint Transplantation (유리 중족-족지관절 이식술을 이용한 주관절 전치환술)

  • Chung, Duke Whan
    • Archives of Reconstructive Microsurgery
    • /
    • v.9 no.2
    • /
    • pp.154-157
    • /
    • 2000
  • Author report a case of double metatarso-phalangeal joint transplantation to the elbow joint in the 31 years old female patient who have large bone defect associated with skin and soft tissue defect. The donor joints were second and third metatarso-phalangeal joint as double joint transfer fashion to enhance stability of graft. The graft based on dorsalis pedis vessel to anastomosed with radial artery of recipient site. The result is unsatisfactory because of long lasting lateral instability of reconstructed elbow joint in spite of 40 degree flexion motion and fair axial stability. We can conclude that joints from foot can not be an effective donor for biologic joint arthroplasty of elbow joint even though double metatarso-phalangeal joint were harvested.

  • PDF

Free Vibrations of Fluid-filled Cylindrical Shells on Partial Elastic Foundations (부분 탄성지지된 유체 저장 원통셸의 자유진동)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.763-770
    • /
    • 2012
  • The free vibration characteristics of fluid-filled cylindrical shells on partial elastic foundations are investigated by an analytical method. The cylindrical shell is fully or partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The motion of shell is represented by the first order shear deformation theory to account for rotary inertia and transverse shear strains. The steady flow of fluid is described by the classical potential flow theory. The fluid-structure interaction is considered in the analysis. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. To validate the present method, the numerical example is presented and compared with the available existing results.

A Study of Heat Storage System with Phase Change Material - Inward Melting in a Horizontal Cylinder (상변화 물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내의 내향용융 열전달 실험 -)

  • Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.44-54
    • /
    • 1989
  • Heat transfer phenomena during inward melting process of the phase change material were studied experimentally. N-docosane paraffin [$C_{22}H_{46}$] is used for phase change material and its melting temperature is $42.5^{\circ}C$. Experiments were performed for melting of an initially no-sub cooled or subcooled solid in a horizontal cylinder, in order to compare and investigate the radial temperature distribution, ratio of melting and melted mass, various energy components stored from the cylinder wall, figure of the melting front in the horizontal cylinder. The solid-liquid interface motion during phase change was recorded photographically. The experimental results reaffirmed the dominant role played by the conduction at early stage, by the natural convection at longer time during inward melting in the horizontal cylinder. Ratio of melting and melted mass are more influenced by wall temperature, rather than by the initial temperature of solid. The latent energy is the largest contributor to the total stored energy.

  • PDF

An Automatic Camera Tracking System for Video Surveillance

  • Lee, Sang-Hwa;Sharma, Siddharth;Lin, Sang-Lin;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.42-45
    • /
    • 2010
  • This paper proposes an intelligent video surveillance system for human object tracking. The proposed system integrates the object extraction, human object recognition, face detection, and camera control. First, the object in the video signals is extracted using the background subtraction. Then, the object region is examined whether it is human or not. For this recognition, the region-based shape descriptor, angular radial transform (ART) in MPEG-7, is used to learn and train the shapes of human bodies. When it is decided that the object is human or something to be investigated, the face region is detected. Finally, the face or object region is tracked in the video, and the pan/tilt/zoom (PTZ) controllable camera tracks the moving object with the motion information of the object. This paper performs the simulation with the real CCTV cameras and their communication protocol. According to the experiments, the proposed system is able to track the moving object(human) automatically not only in the image domain but also in the real 3-D space. The proposed system reduces the human supervisors and improves the surveillance efficiency with the computer vision techniques.

  • PDF

Temperature Dependence on Structure and Self-Diffusion of Water: A Molecular Dynamics Simulation Study using SPC/E Model

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3800-3804
    • /
    • 2013
  • In this study, molecular dynamics simulations of SPC/E (extended simple point charge) model have been carried out in the canonical NVT ensemble over the range of temperatures 300 to 550 K with and without Ewald summation. The quaternion method was used for the rotational motion of the rigid water molecule. Radial distribution functions $g_{OO}(r)$, $g_{OH}(r)$, and $g_{HH}(r)$ and self-diffusion coefficients D for SPC/E water were determined at 300-550 K and compared to experimental data. The temperature dependence on the structural and diffusion properties of SPC/E water was discussed.

Optical Long-slit Spectroscopy of Parsec-scale Jets from DG Tau

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2014
  • We present the result of a long-slit spectroscopic study of DG Tau, which is known to emanate parsec-scale outflows. To study the kinematics and physical properties of the jet, we obtained the optical emission lines of $H{\alpha}$, [OI], [NII], and [SII] from HH 158 and HH 702 using the long-slit spectrograph at Bohyunsan Optical Astronomical Observatory. HH 158 shows the peak radial velocity in a range of ~ - 270 to - 30 km s-1. HH 702, located at 11' away from DG Tau shows the velocity of ~ - 80 km s-1. The proper motion velocities of detected knots are estimated through the comparisons with the locations of those knots in the previous studies. We also examine the variations of physical parameters depending on the velocity distribution and the distance from the source using line ratio maps derived from obtained forbidden emission lines.

  • PDF

Decoupled Control of Active and Permanent Magnetic Bearing System (자기 베어링과 영구자석 베어링으로 이루어진 시스템의 비 연성 제어)

  • Park, Sang-Hyun;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, we propose a bearing redundant coordinates and decoupled PD controller for 5-axes active magnetic bearing system, which consists of two bearing parts such as three-pole hybrid active magnetic bearing for stabilize the radial direction and ring-type permanent magnetic bearing stabilizing in axial and tilting motion. Based on derived system equation with decoupled control scheme, we conduct the modal analysis and measure of modal controllability and observability.

  • PDF

Computer Simulations of two kinds of Polydisperse Hard-Sphere Systems; Atomic Systems and Colloidal Suspensions

  • Shimura Tsutomu;Yamazaki Hiroyuki;Terada Yayoi;Tokuyama Michio
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.21-22
    • /
    • 2003
  • We perform two kinds of computer simulations on polydisperse hard-sphere systems; a molecular-dynamics simulation on atomic systems and a Brownian-dynamics simulation on colloidal suspensions. Analyses of the mean square displacement, the radial distribution function, and the pressure suggest that there exist three phase regions, a liquid phase region, a metastable phase region, and a crystal phase region, where the freezing and melting points are shifted to the values higher than in monodisperse case. It is also shown that the long-time behavior of colloidal suspensions is exactly the same as that of atomic systems.

  • PDF