• 제목/요약/키워드: Radial fatigue test

검색결과 23건 처리시간 0.023초

초음파나노표면개질기술을 이용한 저널베어링 마찰 및 피로특성 연구 (Frictional and Fatigue Characteristics of Journal Bearings by Ultrasonic Nanocrystal Surface Modification (UNSM))

  • 최갑수;다리스렝 스르멩닥와;이승철;김준형;아마노프 아웨즈한;편영식
    • Tribology and Lubricants
    • /
    • 제31권1호
    • /
    • pp.1-5
    • /
    • 2015
  • In this study, we apply an ultrasonic nanocrystal surface modification (UNSM) technique to radial journal bearings (JBs) and disks made of SUJ2 and SCM440, respectively. We investigate frictional properties of untreated and UNSM-treated specimens using a ball-on-disk tester. We construct the Stribeck curve at the boundary, under mixed and full hydrodynamic lubrication conditions for the specimens using friction data obtained from JB tests. The friction at the boundary lubrication condition and the transition period to mixed lubrication condition on the UNSM-treated specimens is reduced, which improves the service life of JBs. The major effects of this reduction in the three lubrication regimes can be explained in the terms of improved mechanical properties and the presence of micro dimples. Moreover, we estimate the friction and fatigue properties of SCM440 specimens using a ball-on-disk specimen under dry and oil-lubricated conditions. Friction test results reveal that the UNSM-treated specimens show lower friction coefficient than the untreated specimens under both dry and oil-lubricated conditions. We evaluate the fatigue properties of SCM440 specimens by calculating the Hertzian stress with respect to the failure cycles. Fatigue tests results also reveal that the UNSM-treated specimens possess a longer fatigue life than the untreated specimens. The improved properties are effective in increasing the energy efficiency of bearings.

치과용 라미네이트 도재의 피로파괴에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE FATIGUE FRACTURE OF LAMINATE PORCELAIN)

  • 박찬운;배태성;이상돈
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.482-505
    • /
    • 1993
  • The purpose of this study was to evaluate the fracture characteristics and the effect of resin bonding of laminate porcelain. In order to characterize the indentation-induced crack, Young's moduli and characteristic indentation dimensions were measured. The fatigue life under three point flexure test was measured using the electro-dynamic type fatigue machine, and the crack propagation with thermocycling was investigated on the condition of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ bath. The Vickers indentation pattern and the fracture surface were examined by an optical microscope and a scanning electron microscope (SEM). The results obtained were summarized as follows ; 1. Young's moduli(E) of the laminate porcelain and the resin cement used in this experiment were $62.56{\pm}3.79GPa$ and $15.01{\pm}0.12GPa$, respectively. 2. The initial crack size of the laminate porcelain was $69.19{\pm}5.94{\mu}m$ when an indentation load of 9.8N was applied, and the fracture toughness was $1.065{\pm}0.156MPa\;m^{1/2}$. 3. The fatigue life of laminate porcelain showed the constant fracture range at the stress level 27.46-35.30MPa. 4. When a cyclic flexure load was applied, the fatigue life of resin-bonded laminate porcelain was more decreased than that of laminate porcelain. 5. When a thermocycling was conducted, the crack growth rate of resin-bonded laminate porcelain was more increased than that of laminate porcelain. 6. Fracture surface showed the radial crack, the lateral crack, and the macroscopic crack branching region beneath the plastic deformation region when an indentation load of 9.8N was applied.

  • PDF

Remaining useful life prediction for PMSM under radial load using particle filter

  • Lee, Younghun;Kim, Inhwan;Choi, Sikgyoung;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.799-805
    • /
    • 2022
  • Permanent magnet synchronous motors (PMSMs) are widely used in systems requiring high control precision, efficiency, and reliability. Predicting the remaining useful life (RUL) with health monitoring of PMSMs prevents catastrophic failure and ensures reliable operation of system. In this study, a model-based method for predicting the RUL of PMSMs using phase current and vibration signals is proposed. The proposed method includes feature selection and RUL prediction based on a particle filter with a degradation model. The Paris-Erdogan model describing micro fatigue crack propagation is used as the degradation model. An experimental set-up to conduct accelerated life test, capable of monitoring various signals was designed in this study. Phase current and vibration data obtained from an accelerated life test of the PMSMs were used to verify the proposed approach. Features extracted from the data were clustered based on monotonicity and correlation clustering, respectively. The results identify the effectiveness of using the current data in predicting the RUL of PMSMs.

12% Cr 로터강의 강도 개선에 관한 연구 (Study on the Improvement of Strength for 12% Chromium Steel Rotor)

  • 장윤석;오세욱
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

12% Cr 로터강의 강도 개선에 관한 연구 (Study on the Improvement of Strength for 12% Chromium Steel Rotor)

  • 장윤석;오세욱
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

피로 수명을 고려한 중형 복합재 풍력터빈 블레이드의 구조설계 및 실험 평가 (Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue Life)

  • 공창덕;방조혁
    • 한국항공우주학회지
    • /
    • 제31권3호
    • /
    • pp.23-30
    • /
    • 2003
  • 본 연구는 풍력발전 시스템에 관련된 IEC61400-1 국제규격 및 GL규격에 정의된 다양한 하중조건을 고려하였고, 이러한 하중들을 효과적으로 견딜 수 있는 특별한 복합재 구조형상을 제안하였다. 복합재 풍력터빈 블레이드 주고에 대한 평가를 위해 유한요소 구조해석을 수행하였다. 구조설꼐에서는 파라미터 분석 연구를 통해 블레이드 구조형상을 결정하였고, 대부분의 주요 설꼐 피라미터를 결정하였다. FEM을 이용한 응력해석결과를 검토하여 설계된 블레이드 구조는 어떠한 하중조건에 대해서도 안전함을 확인하였다. 뿐만 아니라, 본 연구에 의해 새롭게 고안된 삽입볼트를 사용한 허브 연결부의의 설계하중과 피로하중에 대한 안전성을 검토하였으며, 잘 알려진 S-N 선형 손상 이론, 하중 스펙트럼 및 Spera의 실험식에 의해 20년 이상의 피로수명을 갖도록 하였다. 몇 개의 집중하중으로 모사된 공력하중에 대한 실물 정적구조시험을 수행하였으며, 실험결과로부터 설계된 블레이드는 구조적으로 안전함을 확인하였다. 더욱이, 변위 및 응력, 중량, 무게중심 증의 측정된 결과는 해석결과와 일치함을 확인하였으며, 연구된 블레이드는 독일의 국제적 인증기관인 GL사의 인증을 획득하였다.

군용차량 휠 조립체 내구성 향상 방법론 연구 (Design Technique for Durability Improvement of Military Vehicle Wheel)

  • 신철호;강태우;김선진;나철주
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.521-528
    • /
    • 2018
  • 전투목적으로 개발된 군용차량은 타이어 압력이 손실되더라도 일정시간동안 일정거리를 달릴 수 있도록 런플랫시스템을 도입하였다. 런플랫을 적용하기 위하여 휠을 외측림과 내측림으로 구성된 2개의 부분으로 구성하고, 클램핑 볼트를 체결함으로써 외측림과 내측림을 조립한다. 이 클램핑 볼트는 휠의 내구성을 결정하는 중요 부품이다. 실제로 휠의 내측림과 외측림의 파손보다는 클램핑볼트의 파손이 발생되어 휠을 사용하지 못하는 빈도가 높다. 따라서, 클램핑 볼트의 내구성능이 휠의 내구성능과 연관이 크다고 할 수 있다. 본 연구는 휠의 내구성을 향상시키기 위하여 휠조립체를 시험하고 클램핑 볼트를 개발하는 과정을 다루었다. 기존에 정립된 내구시험 조건의 불충분성을 식별하였으며, 휠조립체의 내구성을 보다 정확히 확인할 수 있도록 통제해야 하는 시험조건을 제시하였다. 정립된 시험조건을 기반으로, 성능이 개선된 클램핑 볼트를 시험하였다. 시험조건을 확인한 결과 기존 제품보다 최소 168% 내구성이 향상됨을 확인할 수 있었다. 본 연구는 휠 조립체의 내구시험 방법과 클램핑 볼트를 개발하는 과정에서 고려해야 할 요소를 제시한 것에 의미가 있다 할 수 있다.

탄소 표면경화처리 구름베어링의 유효 경화 깊이에 대한 고찰 (Study on Effective Case Depth for Case Hardened Rolling Bearings)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제32권1호
    • /
    • pp.18-23
    • /
    • 2016
  • The effective case depth for case-hardened rolling bearing has been discussed. For this purpose, rolling contact fatigue tests for ball bearings built with inner race of various hardness values were conducted until L10 calculating rating life using a bearing life test machine under radial loading. Then, the distribution of residual stress below the inner raceway, which depended on the hardness value, was measured by X-ray diffraction. As a result, the linear relationship was established between the hardness value of the inner race and the theoretical shear stress evaluated at the depth where the residual stress disappeared below the inner raceway. Based on the relationship, it could be found that the factor of safety in bearing manufacturer’s rules for the effective case depth of case hardened rolling bearings was set higher. However, it could be also found that the hardness values at the depth where the maximum shearing stress acted below the raceway surface in a tapered roller bearing hardened by the carburizing process, were not sufficient for preventing plastic deformation under the basic dynamic load rating. Consequently, further efforts were still required to reduce or to disperse the contact load on the material design of a rolling bearing in order to prolong its life.

일회성 경두개 직류전기자극(tDCS) 적용이 젊은 성인의 하지 근지구력에 미치는 영향 (Effects of Acute Transcranial Direct Current Stimulation on Muscle Endurance of the Lower Extremities for Young Healthy Adults)

  • Park, Shin-Young;Ko, Do-Kyung;Jeong, Hyeong Do;Lee, Hanall;Lee, Hyungwoo;Kim, Chanki;An, Seungho;Kim, Jiyoung;Moon, Bosung;Son, Jee-Soo;Lee, Dohyeon;Lee, Eui-Young;Lee, Ju Hak;Im, Seungbin;Tan, Yuan;Jeon, Kyoungkyu;Kang, Nyeonju
    • 한국운동역학회지
    • /
    • 제32권3호
    • /
    • pp.94-102
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effect of acute transcranial direct current stimulation (tDCS) on the isokinetic muscular endurance of the lower extremity for young adults. Method: Thirteen young adults performed isokinetic fatigue tasks for two experimental conditions including real tDCS and sham stimulation protocols. Before and after the task, the tensiomyography was used for evaluating muscle contraction characteristics of vastus medialis and semitendinosus. Paired t-test was performed to compare the fatigue index, changes in maximum radial displacement (∆Dm), delay time (∆Tc), and velocity of contraction (∆Vc) between tDCS conditions. Results: We found no significant differences in the fatigue index between real and sham conditions. In addition, the analyses identified no significant different values of ∆Dm, ∆Tc, and ∆Vc in the vastus medialis and semitendinosus between real and sham conditions. Conclusion: These findings suggest that the tDCS protocols may have no acute effect on lower limb muscle endurance for young adults. Future studies should consider the long-term effects of repetitive tDCS sessions, various stimulation positions, exercise tasks, and participant characteristics to more clearly understand the effect of tDCS on muscle endurance of lower extremities.

A CONTROLLED CYCLIC LOADING ON THE SURFACE TREATED AND BONDED CERAMIC: STAIRCASE METHOD

  • Yi, Yang-Jin
    • 대한치과보철학회지
    • /
    • 제46권3호
    • /
    • pp.298-306
    • /
    • 2008
  • STATEMENT OF PROBLEM: Effect of surface treatment of ceramic under loading does not appear to have been investigated. PURPOSE: The aim of this study was to investigate the effect of surface treatment of esthetic ceramic, which is performed to increase the bonding strength, on the fracture stress under controlled cyclic loading condition. MATERIAL AND METHODS: Sixty 1.0 mm-thick specimens were made from Mark II Vitablocs (Vita Zahnfabrik, Germany) and divided into 3 groups: polished (control), sandblasted, and etched. Specimens of each group were bonded to a dentin analog material base including micro-channels to facilitate the flow of water to the bonding interface. Bonded ceramics were cyclically loaded with a flat-end piston in the water (500,000 cycles, 15Hz). Following completion of cyclic loading, specimens were examined for subsurface crack formation and subsequent stress was determined and loaded to next specimen by the staircase method according to the crack existence. RESULTS: There were significant differences of mean fatigue limit in the sandblasted (222.86 ${\pm}$ 23.42 N) and etched group (222.86 ${\pm}$ 14.16 N) when compared to polished group (251.43 ${\pm}$ 10.6 N) (P<.05; Wald-type pair-wise comparison and post hoc Bonferroni test). Of cracked specimens, surface treated group showed longer crack propagation after 24 hours. All failures originated from the radial cracking without cone crack. Fracture resistance of this study was very low and comparable to failure load in the oral cavity. CONCLUSION: Well controlled cyclic loading could induce clinically relevant cracks and fracture resistance of Mark II ceramic was relatively low applicable only to anterior restorations. Surface treatment of inner surface of feldspathic porcelain in the matsicatory area could influence lifetime of restorations.