• 제목/요약/키워드: Radial error

검색결과 274건 처리시간 0.023초

EDNN based prediction of strength and durability properties of HPC using fibres & copper slag

  • Gupta, Mohit;Raj, Ritu;Sahu, Anil Kumar
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.185-194
    • /
    • 2022
  • For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

대형선박용 유압실린더에서 경제요소법을 이용한 응력해석 (Analysis on the Stress of Hydraulic Cylinder for Large Vessel by Boundary Element Method)

  • 김옥삼
    • 수산해양기술연구
    • /
    • 제31권4호
    • /
    • pp.423-434
    • /
    • 1995
  • 수산업분야의 생력화와 조업공정의 단축으로 새로운 활로를 개척할 수 있는 방안으로 보조기계들의 유압화 및 대형화에 사용되는 후벽 유압실린더는 작동응력 거동의 분석과 파손예측의 정확성이 강구되어야만 기계고장으로 인한 해난사고의 개연성을 미연에 감소시킬 수 있다. 균일한 내압을 받는 대형선박용 유압실린더를 수치해석적 방법인 경계요소법을 사용하여 각종 응력 해석의 시도는 엄밀해나 유한요소법의 결과와 비교적 양호하게 일치하고 있다. 축대칭 형상에 대한 반경방향 응력이나 원주방향 응력의 BEM 해석결과는 단일절점과 이중절점 모두 최대 25MPa의 압축응력이나 최대 52MPa의 인장응력이 작용하고 있으므로 재료의 허용응력내에서 작동하고 있음을 알 수 있다. 이중절점 형상함수(double node shape function)를 사용하여 원통형 형상의 구조물에 대한 수치계산 결과의 정확도를 높힐수 있었으며 입력데이터의 증가는 오차감소에 기여하였으나 프로그램의 실행시간(run-time)을 증가시켰다. 코너에서의 트랙션벡터의 불연속 현상을 해결하기 위한 이중절점의 사용은 영역 내부해의 안정성을 확보하였고 경계부근에서의 내부해의 발산을 제거하기 위한 이중지수형 적분법 사용은 해석결과의 오차를 효과적으로 감소시켰다.

  • PDF

광역감시망 적용을 위한 HF 레이더 기반 선박 검출 및 추적 요소 기술 (Wide-area Surveillance Applicable Core Techniques on Ship Detection and Tracking Based on HF Radar Platform)

  • 조철진;박상욱;이영로;이상호;고한석
    • 대한원격탐사학회지
    • /
    • 제34권2_2호
    • /
    • pp.313-326
    • /
    • 2018
  • 현재 국내 환경에서의 HF 레이더는 기본적으로 표층해류의 속도와 방위의 측정에 최적화 되어있는 상태이다. 따라서, 이러한 환경하에서 선박을 탐지하는 데에는 큰 환경 잡음과 다수의 오검출로 인하여 기존의 선박 검출 및 추적 기술로는 정밀도에 한계점이 있다. 특히, 국내의 지형환경에 적합한 콤팩트형 HF(High Frequency) 레이더를 선박의 감시에 적용했을 경우에 나타나는 문제점들인 잡음과 간섭으로 인한 원신호 왜곡과 다수의 오검출이 발생하여 성능에 영향을 미치는 것을 극복하기 위한 검출 및 추적 기술이 요구된다. 본 논문에서는 이러한 조건 하에서 적용이 가능한 선박 검출 및 추적 기술을 제안을 하며, 서해에서 운용되고 있는 콤팩트 HF 레이더 사이트에서 획득한 관측 데이터에 적용하여 성능을 평가하였다. 제안된 기법은 선박의 검출에 대한 부분과 검출 결과의 추적에 대한 부분으로 이루어져 있다. 선박의 검출은 CFAR(Constant False Alarm Rate) 기반의 검출기를 활용하였으며, 실제 환경에서 불규칙적으로 획득되는 잡음과 오검출 신호를 줄이기 위한 PCA(Principal Component Analysis) 기반의 부분공간 분리기법을 적용하였다. 또한, 긴 입력 획득 주기(Coherent Processing Interval) 동안에 발생하는 도플러 주파수 변화로 인하여 하나의 선박이 다수의 검출값을 생성하기도 하는데, 이를 결합하기 위한 군집화 기법을 적용하였다. 선박의 검출 결과는 검출에 실패하거나 오검출을 포함시키는 경우도 발생하는데, 이러한 오검출을 줄이기 위한 선박 추적 기법을 적용하였다. 실험 결과에 따르면 제안된 선박 검출 및 추적 기술을 통하여 콤팩트 HF 레이더가 일정 거리에서 선박의 검출 성공율이 우수하다는 것을 확인할 수 있다.

어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑 (Vision-based Mobile Robot Localization and Mapping using fisheye Lens)

  • 이종실;민홍기;홍승홍
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.256-262
    • /
    • 2004
  • 로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다. 본 논문에서는 어안렌즈를 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특징을 갖는 고급의 영상 특징을 구하고, 이 특징들을 맵 빌딩과 위치 추정에 이용하였다. 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 이용하여 보정된 영상에서 천정영역과 벽영역으로 분할한다. 최초 맵 빌딩시에는 분할된 영역에 대해 특징점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특징점들을 구하고 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맵에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩 과정과 맵 상에서 로봇의 위치를 찾는데 이용된다. 로봇의 위치에서 구해진 특징점들은 로봇의 실제 위치를 추정하기 위해 기존의 맵과 매칭을 행하고 동시에 기존의 맵 데이터베이스는 갱신된다. 제안한 방법을 적용하면 50㎡의 영역에 대한 맵 빌딩 소요 시간은 2분 이내, 위치 추정시 위치 정확도는 ±13cm, 로봇의 자세에 대한 각도 오차는 ±3도이다.

  • PDF

스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑 (Mobile Robot Localization and Mapping using Scale-Invariant Features)

  • 이종실;신동범;권오상;이응혁;홍승홍
    • 전기전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.7-18
    • /
    • 2005
  • 로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다 본 논문에서는 스케일 불변 특정을 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특정을 갖는 고급의 영상 특정을 구하여 맹 빌딩과 위치 추정을 수행한다. 먼저, 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 적용하여 천정영역과 벽영역으로 분할한다 최초 맵 빌딩시에는 분할된 영역에 대해 특정점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특정점들을 구하고 이미 작성된 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맴에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩과정에서 매칭되는 점들을 찾을 때 동시에 수행되어 진다. 그리고 임의의 위치에서 기존의 작성된 맵과 매칭되는 점들을 찾음으로서 위치 추정이 행해지며 동시에 기존의 맵 데이터베이스의 특정점들을 갱신하게 된다. 제안한 방법은 $50m^2$의 영역에 대해 맵 빌딩을 2 분내에 수행할 수 있었으며, 위치의 정확도는 ${\pm}13cm$, 위치에 대한 로봇의 자세(각도)는 ${\pm}3$도의 오차를 갖는다.

  • PDF

온도장 측정 정밀도 향상을 위한 시간 지연 벡터의 재형성 (Regeneration of the Retarded Time Vector for Enhancing the Precision of Acoustic Pyrometry)

  • 김태균;이정권
    • 한국음향학회지
    • /
    • 제33권2호
    • /
    • pp.118-125
    • /
    • 2014
  • 역문제에 기반한 음향 온도 측정법에서는 단면의 음속 분포 계산이 필수적이며, 이를 위하여 단면 외곽에 위치한 센서들 간의 지연시간을 계측하고, 이를 입력으로 하는 전달행렬과 계수 벡터를 이용한 역문제를 이용하여 음속 분포를 예측한다. 그러나, 센서 개수의 부족으로 인하여 충분한 수의 음향 경로가 확보되지 못하면, 지연시간 벡터의 개수가 한정될 수 있다. 지연시간 벡터의 개수는 공간 해상도와 관련 있으며, 부족한 지연시간 벡터의 개수는 공간 해상도의 저하를 초래하여 정확한 온도 재구성 결과를 얻지 못할 수 있다. 본 연구에서는 이 문제를 해결하기 위하여, 실제 측정된 지연시간으로부터 온도장을 재구성 한 뒤, 임의의 경로에 해당하는 지연시간을 재구성 된 온도장으로부터 재형성하여 지연시간 벡터의 개수를 증가시켰다. 측정된 지연시간 벡터와 재형성 된 지연시간 벡터를 함께 사용할 경우, 음향 경로의 개수가 증가하므로 공간 분해능의 향상을 기대할 수 있다. 임의의 온도 분포를 가지는 2차원 단면을 수치 예제로서 채택하였고, 측정된 지연시간만을 이용한 결과와 재형성 된 지연시간을 함께 사용한 재구성 결과를 비교하였다. 그 결과, 재형성 된 지연시간과 측정된 지연시간을 함께 사용한 경우의 온도 재구성 오차가 측정된 지연시간만을 사용한 온도 재구성 오차보다 최대 15 % 감소하였다.

넓은 덕트 단면내의 음원 분포 규명 (Identification of the Sectional Distribution of Sound Source in a Wide Duct)

  • 허용호;이정권
    • 한국음향학회지
    • /
    • 제33권2호
    • /
    • pp.87-93
    • /
    • 2014
  • 덕트 내 음원 면에서의 음압과 입자 속도분포를 상세히 알 수 있다면, 주된 소음원들의 위치와 강도를 분석하여 전파특성을 잘 이해할 수 있고, 이에 따라 저소음화 설계에 유용한 정보로 활용가능하다. 이를 위한 기존의 방법들은 대개 단면상 위치와 무관한 일정 변수로 나타내는 제한점이 있다. 본 논문에서는 음원의 단면 분포를 높은 공간분해능으로 관찰할 수 있는 방법에 대해 연구하였다. 모드 합성법을 기반으로 감쇠파의 영향과 근접장 측정을 포함하는 행렬식을 유도하였으며, 컴프레션 드라이버에 의해 일부 단면이 가진된 유동이 없는 덕트 시스템에서 검증하였다. 감쇠파모드 개수의 증가에 따라 음압 스펙트럼을 더욱 정확하게 근사화 할 수 있었으며, 26개의 감쇠파 모드를 포함한 수렴 결과로부터 관심 헬름홀쯔 수 영역에서 -25 dB 이하의 오차로 예측할 수 있었다. 수렴된 모드 진폭들을 이용하여 kR = 1에서 음원 면에서의 음원변수 분포를 관찰한 결과, 실제 음원이 설치된 국소 위치에서 높은 음압과 입자 속도 값을 분명히 나타내는 것을 보였다. 또한, 감쇠 모드의 역추산시에 정규화기법을 도입하여, 과결정된 반경방향 모드에 의해 발생된 무의미한 피크들을 효과적으로 제거할 수 있었다.

표면영상유속측정법을 이용한 유속 측정 시 카메라 왜곡 영향 분석 (Analysis of Effect on Camera Distortion for Measuring Velocity Using Surface Image Velocimeter)

  • 이준형;윤병만;김서준
    • Ecology and Resilient Infrastructure
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 2021
  • 표면영상유속측정법은 일반적으로 상호상관법을 이용하여 수표면을 촬영한 연속된 두 영상에서 입자군의 명암값 분포를 계산하여 입자군의 변위를 계산하고 이를 두 영상 사이의 시간 간격으로 나누어 입자군의 이동 속도를 산정하는 방법이다. 따라서 표면영상유속측정법으로 산정한 유속의 정확도를 높이기 위해서는 영상 내 두 입자군의 변위를 정확하게 계산하는 것이 무엇보다 중요하다. 즉, 분석하고자 하는 영상에서 입자군이 이동한 물리거리를 정확하게 계산할 수 있어야 한다. 하지만 카메라를 이용하여 실제 하천을 촬영한 영상은 카메라 렌즈에 의한 왜곡이 필연적으로 발생하게 되고 이는 영상 내의 변위 산정 시에도 영향을 미친다. 이에 본 연구에서는 간격이 일정한 격자보드를 이용해, 카메라 렌즈 왜곡이 변위 산정 결과에 미치는 영향을 분석하였다. 연구 결과 카메라 렌즈 왜곡은 영상 중심에서 방사방향으로 점점 크게 나타났으며 변위 산정 오차는 영상 외곽에서 최대 8.10%, 영상 중심 부근에서 5% 이내로 나타났다. 따라서 표면영상유속측정법을 이용하여 하천의 유속 측정 시 카메라 렌즈 왜곡 보정을 실시하여 표면유속 측정 결과의 정확도를 개선하면 하천의 표면유속을 보다 정확하게 측정할 수 있을 것으로 기대된다.

GIS 공통 지표를 활용한 지하수 변화 통합 모델 제공 (Providing the combined models for groundwater changes using common indicators in GIS)

  • 사마네 함타;서유석
    • 한국수자원학회논문집
    • /
    • 제55권3호
    • /
    • pp.245-255
    • /
    • 2022
  • 수질 보호를 위한 정기 계획을 세우는 과정에서 다양한 지표를 이용해 수자원의 수질 추이를 평가하는 일이 필요하며 이는 수역 관리에서 널리 사용하는 방법이다. 본 연구에서는 1995년부터 2020년까지 이란 대수층의 수질 매개변수 자료를 수집, 검토하고, 통계적으로 검증하여 연도별 구획도를 만들었다. 이를 위해 지리정보체계(GIS), 거리 반비례 가중법(IDW), 방사 기저함수(RBF), 포괄 선형 보간법(GPI), 단순, 일반, 범용의 세 유형을 포함하는 Kriging과 Co-Kriging기법을 이용하였다. 이어 최소 불확실성과 최소 구획 오차에 ASE와 RMSE를 포함하는 두 값의 근접도를 더한 것을 최적 모델로 선택하였다. 마지막으로 각 매개변수에 대해 선택한 복합 모델을 Schuler와 Wilcox 지수와 조합하여 구획화했다. 이란의 지하 수자원에 대한 종합평가 결과는 수자원의 59%는 농업용수로, 39.86%는 음용수에 부적합한 등급으로 분류되어 이란 지하수 수질이 위기에 처해 있음을 보여주었다. 마지막으로 추출 결과를 검증하기 위해 지하 수질 지수(GWQI)로 수질의 공간 변화를 평가한 결과 이란의 대수층이 적은 수위변화에도 매우 민감하며 지하수 양도 매우 부족하다는 것을 확인할 수 있었다.