For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.
This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.
수산업분야의 생력화와 조업공정의 단축으로 새로운 활로를 개척할 수 있는 방안으로 보조기계들의 유압화 및 대형화에 사용되는 후벽 유압실린더는 작동응력 거동의 분석과 파손예측의 정확성이 강구되어야만 기계고장으로 인한 해난사고의 개연성을 미연에 감소시킬 수 있다. 균일한 내압을 받는 대형선박용 유압실린더를 수치해석적 방법인 경계요소법을 사용하여 각종 응력 해석의 시도는 엄밀해나 유한요소법의 결과와 비교적 양호하게 일치하고 있다. 축대칭 형상에 대한 반경방향 응력이나 원주방향 응력의 BEM 해석결과는 단일절점과 이중절점 모두 최대 25MPa의 압축응력이나 최대 52MPa의 인장응력이 작용하고 있으므로 재료의 허용응력내에서 작동하고 있음을 알 수 있다. 이중절점 형상함수(double node shape function)를 사용하여 원통형 형상의 구조물에 대한 수치계산 결과의 정확도를 높힐수 있었으며 입력데이터의 증가는 오차감소에 기여하였으나 프로그램의 실행시간(run-time)을 증가시켰다. 코너에서의 트랙션벡터의 불연속 현상을 해결하기 위한 이중절점의 사용은 영역 내부해의 안정성을 확보하였고 경계부근에서의 내부해의 발산을 제거하기 위한 이중지수형 적분법 사용은 해석결과의 오차를 효과적으로 감소시켰다.
현재 국내 환경에서의 HF 레이더는 기본적으로 표층해류의 속도와 방위의 측정에 최적화 되어있는 상태이다. 따라서, 이러한 환경하에서 선박을 탐지하는 데에는 큰 환경 잡음과 다수의 오검출로 인하여 기존의 선박 검출 및 추적 기술로는 정밀도에 한계점이 있다. 특히, 국내의 지형환경에 적합한 콤팩트형 HF(High Frequency) 레이더를 선박의 감시에 적용했을 경우에 나타나는 문제점들인 잡음과 간섭으로 인한 원신호 왜곡과 다수의 오검출이 발생하여 성능에 영향을 미치는 것을 극복하기 위한 검출 및 추적 기술이 요구된다. 본 논문에서는 이러한 조건 하에서 적용이 가능한 선박 검출 및 추적 기술을 제안을 하며, 서해에서 운용되고 있는 콤팩트 HF 레이더 사이트에서 획득한 관측 데이터에 적용하여 성능을 평가하였다. 제안된 기법은 선박의 검출에 대한 부분과 검출 결과의 추적에 대한 부분으로 이루어져 있다. 선박의 검출은 CFAR(Constant False Alarm Rate) 기반의 검출기를 활용하였으며, 실제 환경에서 불규칙적으로 획득되는 잡음과 오검출 신호를 줄이기 위한 PCA(Principal Component Analysis) 기반의 부분공간 분리기법을 적용하였다. 또한, 긴 입력 획득 주기(Coherent Processing Interval) 동안에 발생하는 도플러 주파수 변화로 인하여 하나의 선박이 다수의 검출값을 생성하기도 하는데, 이를 결합하기 위한 군집화 기법을 적용하였다. 선박의 검출 결과는 검출에 실패하거나 오검출을 포함시키는 경우도 발생하는데, 이러한 오검출을 줄이기 위한 선박 추적 기법을 적용하였다. 실험 결과에 따르면 제안된 선박 검출 및 추적 기술을 통하여 콤팩트 HF 레이더가 일정 거리에서 선박의 검출 성공율이 우수하다는 것을 확인할 수 있다.
로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다. 본 논문에서는 어안렌즈를 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특징을 갖는 고급의 영상 특징을 구하고, 이 특징들을 맵 빌딩과 위치 추정에 이용하였다. 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 이용하여 보정된 영상에서 천정영역과 벽영역으로 분할한다. 최초 맵 빌딩시에는 분할된 영역에 대해 특징점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특징점들을 구하고 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맵에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩 과정과 맵 상에서 로봇의 위치를 찾는데 이용된다. 로봇의 위치에서 구해진 특징점들은 로봇의 실제 위치를 추정하기 위해 기존의 맵과 매칭을 행하고 동시에 기존의 맵 데이터베이스는 갱신된다. 제안한 방법을 적용하면 50㎡의 영역에 대한 맵 빌딩 소요 시간은 2분 이내, 위치 추정시 위치 정확도는 ±13cm, 로봇의 자세에 대한 각도 오차는 ±3도이다.
로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다 본 논문에서는 스케일 불변 특정을 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특정을 갖는 고급의 영상 특정을 구하여 맹 빌딩과 위치 추정을 수행한다. 먼저, 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 적용하여 천정영역과 벽영역으로 분할한다 최초 맵 빌딩시에는 분할된 영역에 대해 특정점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특정점들을 구하고 이미 작성된 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맴에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩과정에서 매칭되는 점들을 찾을 때 동시에 수행되어 진다. 그리고 임의의 위치에서 기존의 작성된 맵과 매칭되는 점들을 찾음으로서 위치 추정이 행해지며 동시에 기존의 맵 데이터베이스의 특정점들을 갱신하게 된다. 제안한 방법은 $50m^2$의 영역에 대해 맵 빌딩을 2 분내에 수행할 수 있었으며, 위치의 정확도는 ${\pm}13cm$, 위치에 대한 로봇의 자세(각도)는 ${\pm}3$도의 오차를 갖는다.
역문제에 기반한 음향 온도 측정법에서는 단면의 음속 분포 계산이 필수적이며, 이를 위하여 단면 외곽에 위치한 센서들 간의 지연시간을 계측하고, 이를 입력으로 하는 전달행렬과 계수 벡터를 이용한 역문제를 이용하여 음속 분포를 예측한다. 그러나, 센서 개수의 부족으로 인하여 충분한 수의 음향 경로가 확보되지 못하면, 지연시간 벡터의 개수가 한정될 수 있다. 지연시간 벡터의 개수는 공간 해상도와 관련 있으며, 부족한 지연시간 벡터의 개수는 공간 해상도의 저하를 초래하여 정확한 온도 재구성 결과를 얻지 못할 수 있다. 본 연구에서는 이 문제를 해결하기 위하여, 실제 측정된 지연시간으로부터 온도장을 재구성 한 뒤, 임의의 경로에 해당하는 지연시간을 재구성 된 온도장으로부터 재형성하여 지연시간 벡터의 개수를 증가시켰다. 측정된 지연시간 벡터와 재형성 된 지연시간 벡터를 함께 사용할 경우, 음향 경로의 개수가 증가하므로 공간 분해능의 향상을 기대할 수 있다. 임의의 온도 분포를 가지는 2차원 단면을 수치 예제로서 채택하였고, 측정된 지연시간만을 이용한 결과와 재형성 된 지연시간을 함께 사용한 재구성 결과를 비교하였다. 그 결과, 재형성 된 지연시간과 측정된 지연시간을 함께 사용한 경우의 온도 재구성 오차가 측정된 지연시간만을 사용한 온도 재구성 오차보다 최대 15 % 감소하였다.
덕트 내 음원 면에서의 음압과 입자 속도분포를 상세히 알 수 있다면, 주된 소음원들의 위치와 강도를 분석하여 전파특성을 잘 이해할 수 있고, 이에 따라 저소음화 설계에 유용한 정보로 활용가능하다. 이를 위한 기존의 방법들은 대개 단면상 위치와 무관한 일정 변수로 나타내는 제한점이 있다. 본 논문에서는 음원의 단면 분포를 높은 공간분해능으로 관찰할 수 있는 방법에 대해 연구하였다. 모드 합성법을 기반으로 감쇠파의 영향과 근접장 측정을 포함하는 행렬식을 유도하였으며, 컴프레션 드라이버에 의해 일부 단면이 가진된 유동이 없는 덕트 시스템에서 검증하였다. 감쇠파모드 개수의 증가에 따라 음압 스펙트럼을 더욱 정확하게 근사화 할 수 있었으며, 26개의 감쇠파 모드를 포함한 수렴 결과로부터 관심 헬름홀쯔 수 영역에서 -25 dB 이하의 오차로 예측할 수 있었다. 수렴된 모드 진폭들을 이용하여 kR = 1에서 음원 면에서의 음원변수 분포를 관찰한 결과, 실제 음원이 설치된 국소 위치에서 높은 음압과 입자 속도 값을 분명히 나타내는 것을 보였다. 또한, 감쇠 모드의 역추산시에 정규화기법을 도입하여, 과결정된 반경방향 모드에 의해 발생된 무의미한 피크들을 효과적으로 제거할 수 있었다.
표면영상유속측정법은 일반적으로 상호상관법을 이용하여 수표면을 촬영한 연속된 두 영상에서 입자군의 명암값 분포를 계산하여 입자군의 변위를 계산하고 이를 두 영상 사이의 시간 간격으로 나누어 입자군의 이동 속도를 산정하는 방법이다. 따라서 표면영상유속측정법으로 산정한 유속의 정확도를 높이기 위해서는 영상 내 두 입자군의 변위를 정확하게 계산하는 것이 무엇보다 중요하다. 즉, 분석하고자 하는 영상에서 입자군이 이동한 물리거리를 정확하게 계산할 수 있어야 한다. 하지만 카메라를 이용하여 실제 하천을 촬영한 영상은 카메라 렌즈에 의한 왜곡이 필연적으로 발생하게 되고 이는 영상 내의 변위 산정 시에도 영향을 미친다. 이에 본 연구에서는 간격이 일정한 격자보드를 이용해, 카메라 렌즈 왜곡이 변위 산정 결과에 미치는 영향을 분석하였다. 연구 결과 카메라 렌즈 왜곡은 영상 중심에서 방사방향으로 점점 크게 나타났으며 변위 산정 오차는 영상 외곽에서 최대 8.10%, 영상 중심 부근에서 5% 이내로 나타났다. 따라서 표면영상유속측정법을 이용하여 하천의 유속 측정 시 카메라 렌즈 왜곡 보정을 실시하여 표면유속 측정 결과의 정확도를 개선하면 하천의 표면유속을 보다 정확하게 측정할 수 있을 것으로 기대된다.
수질 보호를 위한 정기 계획을 세우는 과정에서 다양한 지표를 이용해 수자원의 수질 추이를 평가하는 일이 필요하며 이는 수역 관리에서 널리 사용하는 방법이다. 본 연구에서는 1995년부터 2020년까지 이란 대수층의 수질 매개변수 자료를 수집, 검토하고, 통계적으로 검증하여 연도별 구획도를 만들었다. 이를 위해 지리정보체계(GIS), 거리 반비례 가중법(IDW), 방사 기저함수(RBF), 포괄 선형 보간법(GPI), 단순, 일반, 범용의 세 유형을 포함하는 Kriging과 Co-Kriging기법을 이용하였다. 이어 최소 불확실성과 최소 구획 오차에 ASE와 RMSE를 포함하는 두 값의 근접도를 더한 것을 최적 모델로 선택하였다. 마지막으로 각 매개변수에 대해 선택한 복합 모델을 Schuler와 Wilcox 지수와 조합하여 구획화했다. 이란의 지하 수자원에 대한 종합평가 결과는 수자원의 59%는 농업용수로, 39.86%는 음용수에 부적합한 등급으로 분류되어 이란 지하수 수질이 위기에 처해 있음을 보여주었다. 마지막으로 추출 결과를 검증하기 위해 지하 수질 지수(GWQI)로 수질의 공간 변화를 평가한 결과 이란의 대수층이 적은 수위변화에도 매우 민감하며 지하수 양도 매우 부족하다는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.