• Title/Summary/Keyword: Radial electromagnetic force

Search Result 42, Processing Time 0.029 seconds

Improving Speed of Coil Guns (코일건의 속도향상에 관한 연구)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • Coil guns are known worldwide as inexpensive space launch vehicles. The principle of Fleming's right-hand rule allows the coil gun to accelerate the projectile by applying enormous voltage to the solenoid coil. This study was performed to improve the speed of the coil gun using MATLAB, a commercially available numerical program for high launching force of electromagnetic projectiles. To maximize the speed of the projectile, the largest coil of American wire gauge was used, and the number of windings in the radial and axial directions of the solenoid coil was optimized. Optimal length of the projectile was obtained by calculating the optimal aspect ratio between the axial length of the solenoid coil and the length of the projectile.

Tilt analysis of optical pickup actuator using coupled fields analysis (연성해석을 이용한 광픽업 구동기 경사 해석)

  • 신창훈;김철진;이경택;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.684-687
    • /
    • 2002
  • In optical disk drive(ODD), pickup actuator, which comprises a key part of an optical disk drive equipment. must be thin. compact, and high sensitive. Low tilt is also an important requirement for the actuator, since optical disks are to high density. This tilt occurs from around the axis parallel to the tangential and radial direction of the disk. The main reason of the moment is the coupling effect between focus driving system and tracking driving system. This paper analyzed tut quantity due to focusing and tracking force through coupled fields analysts with electromagnetic analysis and structural analysis.

  • PDF

Investigation on Electromagnetic Field Characteristics of Interior Permanent Magnet Synchronous Machine Considering Harmonics of Phase Current due to Influence of Mechanical Energy Storage System

  • Park, Yu-Seop
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • This paper investigates the influence of mechanical energy storage on the interior permanent magnet synchronous machine (IPMSM) when it is operated in the generating mode. An IPMSM with six-poles and nine-slots employing concentrated coil winding type is considered as the analysis model, and a surface-mounted permanent magnet synchronous motor directly connected to a heavy wheel is applied as the mechanical energy storage system by using the moment of inertia. Based on the constructed experimental set-up with manufactured machines and power converters, the generated electrical energy is converted into the mechanical energy, and the electromagnetic filed characteristics of IPMSM are subsequently investigated by applying the measured phase current of IPMSM based on finite element method. Compared to the characteristics in a no-load condition, it is confirmed that the magnetic behavior, radial force, and power loss characteristics are highly influenced by the harmonics of the phase current due to the mechanical energy storage system.

Study on the D.C Excitation Commutation Method of SRM for Reduction of Vibration/Acoustic Noise (SRM의 진동.소음의 저감을 위한 직류여자 전류방식에 관한 연구)

  • 오석규;추영배;이일천;황영문
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.147-150
    • /
    • 1999
  • SRM drives generate large vibration and acoustic noise because it is commutated individually by step pulse m.m.f on each phase pole. The frequency or motor speed of peak vibrations and acoustic noises is coincided with the natural resonant frequency of the magnetic structure and frame material. And this radial vibration force is induced on the phase commutation region. This paper suggest the new electromagnetic structure of SRM with auxiliary commutation winding excited d.c e.m.f.. This phase- commutating winding is coupled magnetically between one phase winding and the vibrating force is falled down. As a result, SRM with d.c exciting commutation winding is very useful to reduce vibration and acoustic noise of SRM drive.

  • PDF

Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors (BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석)

  • Kim, Tae-Jong;Hwang, Sang-Mun;Park, No-Gil
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF

Stress acting on surface of the sleeve in tubular type linear motors due to pulsed input (원형코일형 선형모타에서의 충격입력에 의한 가동자 표면응력)

  • Kim, Gi-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.33-35
    • /
    • 1995
  • Tubular coils are widely used in various electromagnetic applications. For the purpose to obtain the mechanical output power, one of the two sets of coil arrays, called drive, is generally fixed while the other, called sleeve or projectile, is not fixed and easy to move. Among the three force components acting on the coil arrays, the radial one used to affect as a stress on the surfiace of the sleeve, or a restoring force if it is off-centered. The system under transient state or intended pulsed input power is likely to have the worst condition in mechanical stress, and it is necessary to design the mechanical strength of the sleeve within the permanent deformation limit. This paper is focused on the presentation of analytic expressions for the stress on surface of the sleeve.

  • PDF

Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing (하이브리드 AMB를 포함한 초전도 플라이휠 에너지 저장장치의 실험평가)

  • Lee, J.P.;Kim, H.G.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

Study on the Reduction of Vibration, Acoustic Noise of SRM by DC Excitation Commutation Method (SRM의 직류여자 전류방식에 의한 진동, 소음의 저감 대책에 관한 연구)

  • Hwang, Yeong-Mun;Jeong, Tae-Uk;O, Seong-Gyu;Chu, Yeong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Switched reluctance motor(SRM) has simple magnetic structure, and requires simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase pole. In the vibration and acoustic noise characteristics. The considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural mode frequency of mechanical structure. This radial vibration force is generated in the phase commutation region. This paper suggests the new electromagnetic structure of SRM with auxiliary commutation winding which is excited by direct current. This phase and commutation winding are coupled magnetically between one phase winding and the other. Therefore, the switch-off phase current is absorbed by the another phase winding. By this interaction of phase and commutation winding in commutation mechanism, vibration and noise is reduced. And this reduction effect is examined by the test of prototype machine. As a result, SRM with DC exciting commutation winding is very useful to reduce vibration and acoustic noise.

  • PDF

Magnetic analysis of a finite solenoid (유한 솔레노이드의 자속밀도 해석)

  • Lee, Ju-Hee;Hwang, Seon;Lee, Dong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6453-6457
    • /
    • 2015
  • In this paper, the theoretical analysis for a solenoid with a finite length was verified by the finite element simulation. The solenoids are widely being used in the field of mechanical, industrial, medical industry due to their simple structure and fast responses. Solenoid actuators use an electromagnetic force. A magnetic field is formed around the solenoid coil when a current is applied. The magnetic force generated by the magnetic field enables an inside plunger to move linearly. The axial and radial magnetic fields (magnetic flux density, B) at a certain point were calculated from the Biot-Savart's law and compared with the simulation analysis from the ANSYS-Magnetostatic S/W. Comparison result, an error exists in the error range, and could therefore verify the accuracy.

Analysis of the Magnetic Noise for Large Power Induction Motors at Loading Operation (대용량 유도전동기의 부하 운전 시 자기 소음 특성 해석)

  • Hong, Gil-Dong;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.509-515
    • /
    • 2009
  • When a squirrel cage induction motor is loaded, the magnetic noise can increase depending on the load current. It is due to the variation of air gap harmonic fluxes from the rotor current induced by loading. This unfavorable noise can be anticipated by analysing the radial force waves in the air gap, the mode shapes of them, and stator core natural frequencies at each mode. With the experimental tests with the different rotor slot numbers, the variation of magnetic noise depending on the load current is studied and the method to reduce the magnetic noise is suggested with the newly developed magnetic noise analysis program.