• Title/Summary/Keyword: Radial Load

Search Result 375, Processing Time 0.037 seconds

A Study of a Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode

  • Lee, Seong-Beom;Park, Jong-Keun;Min, Je-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.16-21
    • /
    • 2004
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. The relation between the load applied to the shaft or sleeve and the relative displacement of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem fur the bushing response leads to the load-displacement relation, which requires complex calculations. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data for the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation for radial response of the bushing. After the load relaxation function for the bushing was obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of the modified Lianis model and those of the proposed model. It was shown that the proposed Pipkin-Rogers model was in very good agreement with the modified Lianis model.

LOAD SHEDDING SIMULATION FOR MAINTAINING FREQUENCY STABILITY-GAS SEPARATION PLANT CASE (주파수 안정도 유지를 위한 부하차단 시뮬레이션-가스분리플랜트 사례)

  • Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.72_73
    • /
    • 2009
  • The industrial power system has the radial plant distribution system and domestic generators to supply the essential loads. When the system is isolated from the utility tie line, the system frequency drops resulting in the trip of generators. The load shedding scheme shall be properly designed to secure the essential load. In this paper two kinds of load shedding schemes, those are, the Fast Act Load Shedding(FALS) and Under Frequency Load Shedding(UFLS) are simulated and compared taking an example of petrochemical gas separation plant.

  • PDF

Mechanical Characteristics of Retractable Radial Cable Roof Systems (개폐식 방사형 케이블 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo;Choe, Dong-Il
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics on the geometric nonlinear behavior of radial cable roof systems for long span retractable cable roof structures. The retractable roof is designed as a full control system to overcome extreme outdoor environments such as extreme hot or cold weather, strong wind or sunlight, and the cable roof greatly can reduce roof weight compared to other rigid structural system. A retractable cable roof system is a type of structures in which the part of entire roof can be opened and closed. The radial cable roof is an effective structural system for large span retractable roofs, the outer perimeter of the roof is a fixed membrane roof and the middle part is a roof that can be opened and closed. The double arrangement cables of a radial cable truss roof system with reverse curvature works more effectively as a load bearing cables, the cable system can carry vertical load in up and downward direction. In this paper, to analyze the mechanical characteristics of a radial cable roof system with central posts, the authors will investigate the tensile forces of bearing cables, stabilized cables, ring cables, and the deflection of roof according to the height of the post or hub that affects the sag ratio of cable truss. The tensile forces of the cables and the deflection of the roof are compared for the cases when the retractable roof is closed and opened.

Load Transfer Switching for Reducing the Voltage Sag's Effect in Radial Power Distribution System (순간전압강하 저감을 위한 방사상 배전계통에서의 부하 절환 스위칭)

  • Yun, Sang-Yun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.208-210
    • /
    • 2000
  • In this paper, we present a method for mitigating the effect of voltage sag in radial power distribution systems using load transfer switching (LTS). The term of LTS is defined that the weakness load points for voltage sag transfer to the alternative source during the fault clearing practices. The sequences of proposed LTS method is divided into the search of weakness points for voltage sag using the risk assessment model and transfer behavior of weakness points. Through the case studies, we verify the effectiveness of proposed LTS method and present the searching method of effective application points of LTS method using the risk assessment model.

  • PDF

A Study on Distribution System Reconfiguration using GA and Kruskal Algorithm (유전 알고리즘과 Kruskal 알고리즘을 이용한 배전계통 재구성에 관한 연구)

  • An, Jin-O;Kim, Se-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.118-123
    • /
    • 2000
  • This paper presents an efficient algorithm for loss reduction and load balancing by sectionalizing switch operation in large scale distribution system of radial type. We use Genetic algorithm and Kruskal algorithm to solve distribution system reconfiguration. Genetic algorithm is used to minimize objective function including loss and load balancing items. Kruskal algorithm is used to satisfy the radial condition of distribution system. The experimental results show that the proposed method has the ability to search a good solution regardless of initial configuration and size of system.

  • PDF

Load Modeling Method Based on Radial Basis Function Networks Considering of Hormonic components (고조파를 고려한 방사기저함수 네트워크 기반의 부하모델링 기법)

  • Ji, Pyeong-Shik;Lee, Dae-Jong;Lee, Jong-Pil;Lim, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.46-53
    • /
    • 2008
  • In this study, we developed RBFN(Radial Basis Function Networks) based load modeling method with harmonic components. The developed method considers harmonic information as well as fundamental frequency and voltage considered as essential factors in conventional method. Thus, the reposed method makes it possible to effectively estimate load characteristics in power lines with harmonics. RBFN has some advantage such as simple structure and rapid computation ability compared with multi-layer perceptorn which is extensively applied for load modeling. To verify the effectiveness, the proposed method has been intensively tested with various dataset acquired under the different frequency and voltage and compared it with conventional methods such as polynomial method, MLPN and RBFN with no harmonic components.

Two-Dimensional Finite Element Analysis of Hot Radial Forging (열간반경단조의 2차원 유한요소해석)

  • 박치용;조종래;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1166-1180
    • /
    • 1990
  • The study is concerned with the two-dimensional thermo-viscoplastic finite element analysis for radial forging as an incremental forging process. The deformation and temperature distribution of the workpiece during radial forging are studied. The analysis of deformation and the analysis of heat transfer are carried out for simple upsetting of cylinder by decoupling the above two analyses. A method of treatment for heat transfer through the contact region between the die and the workpiece is suggested, in which remeshing of the die elements is not necessary. Radial forging of a mild steel cylinder at the elevated temperature is subjected to the decoupled finite element analysis as well as to the experiment. The computed results in deformation, load and temperature distribution are found to be in good agreement with the experimental observations. As an example of viscoplastic decoupled analysis of hot radial forging, forging of a square section into a circular section is treated. The stresses, strains, strain rates and temperature distribution are computed by superposing material properties as the workpiece is rotated and forged incrementally. It was been thus shown that proposed method of analysis can be effectively applied to the hot radial forging processes.

The Development of Dynamic Forecasting Model for Short Term Power Demand using Radial Basis Function Network (Radial Basis 함수를 이용한 동적 - 단기 전력수요예측 모형의 개발)

  • Min, Joon-Young;Cho, Hyung-Ki
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1749-1758
    • /
    • 1997
  • This paper suggests the development of dynamic forecasting model for short-term power demand based on Radial Basis Function Network and Pal's GLVQ algorithm. Radial Basis Function methods are often compared with the backpropagation training, feed-forward network, which is the most widely used neural network paradigm. The Radial Basis Function Network is a single hidden layer feed-forward neural network. Each node of the hidden layer has a parameter vector called center. This center is determined by clustering algorithm. Theatments of classical approached to clustering methods include theories by Hartigan(K-means algorithm), Kohonen(Self Organized Feature Maps %3A SOFM and Learning Vector Quantization %3A LVQ model), Carpenter and Grossberg(ART-2 model). In this model, the first approach organizes the load pattern into two clusters by Pal's GLVQ clustering algorithm. The reason of using GLVQ algorithm in this model is that GLVQ algorithm can classify the patterns better than other algorithms. And the second approach forecasts hourly load patterns by radial basis function network which has been constructed two hidden nodes. These nodes are determined from the cluster centers of the GLVQ in first step. This model was applied to forecast the hourly loads on Mar. $4^{th},\;Jun.\;4^{th},\;Jul.\;4^{th},\;Sep.\;4^{th},\;Nov.\;4^{th},$ 1995, after having trained the data for the days from Mar. $1^{th}\;to\;3^{th},\;from\;Jun.\;1^{th}\;to\;3^{th},\;from\;Jul.\;1^{th}\;to\;3^{th},\;from\;Sep.\;1^{th}\;to\;3^{th},\;and\;from\;Nov.\;1^{th}\;to\;3^{th},$ 1995, respectively. In the experiments, the average absolute errors of one-hour ahead forecasts on utility actual data are shown to be 1.3795%.

  • PDF

Forming Characterististics of Radial-Backward Extrusion for Single Action Pressing (단동 프레싱에 의한 레이디얼-후방압출의 성형특성)

  • Jang, Dong-Hwan;Ko, Beong-Du;Lee, Yeong-Sub;Hwang, Beong-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.76-83
    • /
    • 2001
  • This paper is concerned with the analysis of the forming characteristics of radial-backward extrusion. The single action pressing is analyzed by using the rigid-plastic FEM. The design factors such as die corner radius, gap height, and friction factor are involved in the simulation. The analysis is focused on the influences of the design factors on the maximum punch farce and metal flow into can and flange region. As a result of analysis, the gap height among the design factors is known to have a major effect on the metal flow of radial-backward extrusion for single action pressing compared with other design factors. As is expected, forming load and volume of flange increase as gap height and die corner radius increase, respectively.

  • PDF

A Study on the Radial Pulse Detection System for the Total Macjin( I ) (총안 맥진을 위한 맥동검출기 개발에 관한 연구( I ))

  • Kim, K.S.;Yang, S.Y.;Han, S.C.;Park, Y.B.;Kim, J.K.;Huh, W.
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.551-554
    • /
    • 1999
  • In this paper, we developed a radial pulse transducer that has strain-gauge cantilever type load cell for total pulse detection on chongu arterial. The transducer consist of load cell and driving electronic circuits. Load cell consist of cantilever and two metal film strain gauge. The Pressure signal from chongu artery is delivered to load cell using artery rider that attached to cantilever Therefore the pressure signal convert to voltage signals by the developed transducer As the results of experiment, the developed transducer has very good linearity at pressure to voltage conversion. The total pulse detection transducer can detected three kinds of chongu artery pulse with conveniently.

  • PDF