• Title/Summary/Keyword: Radial Load

Search Result 375, Processing Time 0.026 seconds

Prediction of the Fatigue Life of Deep Groove Ball Bearing under Radial and Moment Loads -Equivalent Dynamic Loads- (반경방향과 모멘트하중 하에서의 깊은홈 볼베어링의 피로수명 평가 -동등가하중식 제안-)

  • 김완두;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1654-1663
    • /
    • 1994
  • Even if the ball bearing was conservatively designed considering the dynamic capacity and the rating life, sometimes the bearing was early failed on account of the misalignment and the lubricant contaminations etc. Misalignment was generated when bearing-shaft system transmitted large power and when the bearing was inadequately mounted. It was possible to predict the fatigue life of ball bearing under the misalignment considering the motions of ball, cage and raceway, and the factors of the effect on fatigue life. Misalignment affected on ball bearing as radial and moment load and the relationships between misalignment and moment were obtained. In this paper, the analysis of the load distributions between ball and raceway, and the prediction of fatigue life of deep groove ball bearing under radial and moment loads were carried out. And, the new formulation of equivalent dynamic load considering the effects of moment load was proposed.

A Study on the Forming Characteristics of Radial-Forward Extrusion Process (레이디얼-전방압출 공정의 성형특성에 관한 연구)

  • 황승규;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.84-89
    • /
    • 2002
  • This study is concerned with the analysis of the forming characteristics of radial-forward extrusion. Angle between radial and forward extrusion, gap height, and friction factor are considered as important design factors to affect forming characteristics in radial-forward extrusion. The rigid-plastic finite element method is adopted to analyze the effects of design factors on forming loads. The incremental rates of loads are nearly constant except the deformation zone from radial to forward extrusion. The smaller angle induces lesser force increment, therefore forming load increases as the angle increases. Maximum load also increases as gap-height decreases and friction factor increases.

Analysis of belt behavior for a metal V-belt CVT (금속 V-벨트 CVT의 벨트거동 해석)

  • 김현수;이재신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.557-566
    • /
    • 1991
  • The metal V-belt behavior of a continuously variable transmission was investigated analytically and experimentally. Numerical results showed that nondimensional belt radial displacement increased in the radial inward direction for the driven pulley, while that of the driver pulley increased for the first 90 degrees of the active are and decreased with the increasing torque load. Experimental results for the belt radial displacement were in good agreement with the theoretical results. However, the absolute magnitude of the belt radial displacement was so small that the change in the belt displacement could not be measured in the experimental range except for the inlet region of the driven pulley, where the radial inward displacement was observed due to the effect of bending moment. The speed ratio-axial force relationship derived from the belt behavior analysis also showed god agreement with the experiment.

Effect of external compressive load during a continuous radio-frequency /vacuum process on movement behavior

  • Lee, Nam-Ho;Jin, Young-Moon
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Movement behavior, shrinkage and equilibrium moisture content (EMC), in this experiment reflected a change of hygroscopicity mainly affected by continuously compressive load during radio-frequency/vacuum (RF/V) drying and humidity changes during equilibrating. As a result of interaction of the compressive load and moisture content changing under the RF/V condition, the shrinkages in loading direction were significantly increased while those perpendicular to loading direction were decreased. The shrinkages were affected most in tangential, and least in longitudinal direction. The shrinkages showed higher values in continuous drying than in intermittent drying. In the direction of increased shrinkage, all the movements were also increased, for example, the tangential movement for the loaded-RS and the radial movement for loaded-TS; in the direction of decreased shrinkage, all the movements except the tangential movement for the loaded-TS were decreased such as the tangential and radial movements for the loaded-ES, and the radial movement for the loaded-RS, comparing with those of the load-free. EMCs of the loaded specimens were all higher than that of the load-free specimen, and the highest for the loaded-TS, the lowest for the loaded-ES. The transverse hygroscopicity of specimen was reduced for the loaded-ES, but increased for the loaded-TS.

  • PDF

A Novel Second Order Radial Basis Function Neural Network Technique for Enhanced Load Forecasting of Photovoltaic Power Systems

  • Farhat, Arwa Ben;Chandel, Shyam.Singh;Woo, Wai Lok;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • In this study, a novel improved second order Radial Basis Function Neural Network based method with excellent scheduling capabilities is used for the dynamic prediction of short and long-term energy required applications. The effectiveness and the reliability of the algorithm are evaluated using training operations with New England-ISO database. The dynamic prediction algorithm is implemented in Matlab and the computation of mean absolute error and mean absolute percent error, and training time for the forecasted load, are determined. The results show the impact of temperature and other input parameters on the accuracy of solar Photovoltaic load forecasting. The mean absolute percent error is found to be between 1% to 3% and the training time is evaluated from 3s to 10s. The results are also compared with the previous studies, which show that this new method predicts short and long-term load better than sigmoidal neural network and bagged regression trees. The forecasted energy is found to be the nearest to the correct values as given by England ISO database, which shows that the method can be used reliably for short and long-term load forecasting of any electrical system.

Load Flow Analysis for Distribution Automation System based on Distributed Load Modeling

  • Yang, Xia;Choi, Myeon-Song;Lim, Il-Hyung;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.329-334
    • /
    • 2007
  • In this paper, a new load flow algorithm is proposed on the basis of distributed load modeling in radial distribution networks. Since the correct state data in the distribution power networks is basic for all distribution automation algorithms in the Distribution Automation System (DAS), the distribution networks load flow is essential to obtain the state data. DAS Feeder Remote Terminal Units (FRTUs) are used to measure and acquire the necessary data for load flow calculations. In case studies, the proposed algorithm has been proven to be more accurate than a conventional algorithm; and it has also been tested in a simple radial distribution system.

A Study for a load flow analysis algorithm in the three-phase distribution network (3상 배전계통에서의 부하조류해석 알고리즘에 관한 연구)

  • Ryu, Jae-Hong;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.150-152
    • /
    • 2000
  • This paper introduces an advanced three-phase load flow analysis algorithm in the radial distribution network. This method is an extension of the Novel method for solving radial distribution networks with the emphasis on expanding from single phase to three-phase. The proposed method involves only simple algebraic computation without any form of Jacobian matrix but has a desirable convergence characteristic. Computationally, The suggested technique is very efficient and requires less computer memory storage and maintains high execution speed. Also, the submitted process can be easily programmed and be simply extended to different types of load characteristics. A simulation results applied to the IEEE 34 bus radial distribution feeder are examined by using the MATLAB.

  • PDF

Prediction of the Fatigue Life of Deep Groove Ball Bearing Under Radial and Moment Loads - Fatigue Life Tests and Proposal of the Life Adjustment Factors (반경방향과 모멘트하중 하에서의 깊은홈 베어링의 피로수명평가 - 수명시험 및 수명보정계수 제안)

  • 김완두;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3149-3158
    • /
    • 1994
  • In this paper, using the formulation of dynamic equivalent load considering the effects of moment load and the equation to estimate the cage rotational speed, the new life equation of deep groove ball bearing under radial and moment loads was proposed. Fatigue life test apparatus with the measuring equipment of shaft and cage speed was designed and developed to be capable of subjecting combined radial and moment load. Fatigue life tests were executed by sudden death test method and the reliability of fatigue lives was evaluated by Weibull distribution analysis. From the results of fatigue tests and analysis, the relationships between film parameters and life adjustment factors were acquired. And it was turned out that so as to estimate the effect of moment load on fatigue life, the life adjustment factor as well as the dynamic equivalent load must be taken into account.

Effects of Partially Distributed Loads on Dynamic Response of Plane Parabolic Arch (부분분포하중이 평면 포물선아치의 동적응답에 마치는 영향)

  • Cho, Jin-Goo;Park, Keun-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.21-28
    • /
    • 2004
  • This study aims to investigate the effects of partially distributed loads on the dynamic behaviour of steel parabolic arches by using the elasto-plastic finite element model based on the Von Mises yield criteria and the Prandtl-Reuss How rule. For this purpose, the vertical and the radial load conditions were considered as a distributed loading and the loading range is varied from 40% to 100% of arch span. Normal arch and arch with initial deflection were studied. The initial deflection of arch was assumed by the sinusoidal motile of ${\omega}_i\;=\;{\\omega}_O$ sin ($n{\pi}x/L$). Several numerical examples were tested considering symmetric initial deflection when the maximum initial deflection at the apex is fixed as L/1000. The analysis resluts showed that the maximum deflection at the apex of arch was occurred when 70% of arch span was loaded. The maximum deflection at the quarter point of arch span was occurred when 50% of arch span was loaded. It is known that the optimal rise to span ratio between 0.2 and 0.3 when the vertical or radial distributed load is applied. It is verified that the influence of initial deflection of radial load case is more serious than that of vertical load case.