• Title/Summary/Keyword: Radial Depth

Search Result 205, Processing Time 0.024 seconds

In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling (엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측)

  • 최종근;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF

The Effects of Forming Depth and Feed Rate on Forming Force of Backward Flow Forming (후방유동성형에서 가공깊이와 이송속도가 성형력에 미치는 영향)

  • Nam Kyoung-O;Yeom Sung-Ho;Kwon Hyuk-Sun;Hong Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.16-22
    • /
    • 2005
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming force and enhanced mechanical and surface quality for a good finished part, compared with other method formed parts. So flow forming technique is used widely in industrial production. Especially spinning and flow forming techniques are used frequently in automotive, aerial, defense industry. In this paper, finite element method analysis of three-roller backward flow forming of a workpiece is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forces on several forming depth and feed rate conditions are obtained.

Applying Focused and Radial Shock Wave for Calcific Tendinitis of the Shoulder : Randomized Controlled Study

  • Kim, Jonggun;Oh, Changmin;Yoo, John;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.356-362
    • /
    • 2022
  • Objective: Extracorporeal shock wave therapy (ESWT) is a nonsurgical treatment alternative to surgery for various musculoskeletal diseases that have traditionally been difficult to treat conservatively, including calcific tendinitis, tennis elbow, and plantar fasciitis. This study evaluated the effect of focused and radial shock wave therapy for calcific tendinitis of the shoulder. Design: Randomized controlled study Methods: Forty participants with calcific tendinitis were randomized into focused shock wave therapy (FSWT, n=20) and radial shock wave therapy (RSWT, n=20) groups. Patients were examined before and one week after treatment. Pain intensity was subjectively assessed using the visual analogue scale and function was assessed using the Constant-Murley score (CMS) and range of motion (ROM). Results: The results showed a significant decrease in pain and significant increase in shoulder mobility and function in both groups. However, FSWT was significantly more effective than RSWT, based on CMS and ROM assessment. Conclusions: Although it is possible to raise the energy intensity of RSWT to increase the depth at which the energy becomes dispersed, higher energy intensity is associated with a greater risk of severe neurovascular damage, and that high-intensity stimulation can cause adverse effects such as pain and petechiae. Therefore, FSWT is considered to be a safe and effective method for treating tendinous lesions while minimizing adverse effects. In conclusion, both FSWT and RSWT can reduce pain and increase mobility and function. FSWT can be considered as an alternative for calcific tendinitis of the shoulder.

Punching Shear Strength in Thick Slabs (Thick Slab의 펀칭전단강도)

  • Kim, Woo;Kim, Dae-Joong;Lee, Jee-An
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.47-52
    • /
    • 1994
  • In designing of slabs, a prediction of the punching shear capacity is one of important concerns. In this study, an equation was proposed to predict the punching shear strength of reinforced concrete slabs. The proposed equation depends on concrete compression strength, steel ratio, effective depth and slab radial length. The good correlation exists between the predicted punching shear strength and the measured.

  • PDF

IUE ARCHIVAL SPECTRA OF 31 CYGNI

  • Kang, Young-Woon
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.53-61
    • /
    • 1991
  • UV light curve of 31 Cygni has been made from the IUE high dispersion specta. The depth of primary minimum of the light curve is 5.2 magnitudes because the B4 star's steep spectral gradient. The light curve has been analyzed by the method of Wilson and Devinney Differential Correction (WD). The radial velocities have been measured using the Mg II h lines. The spectroscopic elements have been determined by the method of WD. The change of the Mg II resonance doublet has been investigated based on the eight representative spectra taken at well distributed orbital phases.

  • PDF

Geometric Nonlinear Analysis of Underground Laminated Composite Pipes (기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석)

  • 김덕현;이인원;변문주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.30-35
    • /
    • 1988
  • An analytical study was conducted using the Galerkin technique to determine the behaviour of thin fibre-reinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. We assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. And we also assumed that radial shear stress is negligible because the ratio of the thickness to the radius of pipe is very small. We, in this paper, discuss the effect of the number of layer, fiber orientation, and soil property.

  • PDF

Analysis of the Conical Air Bearings with two Circumferential Grooves (2 열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;김우정;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.51-56
    • /
    • 1993
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and champing coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

  • PDF

Analysis of the Conical Air Bearings with two Circumferential Grooves (2열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 1994
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and damping coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

Vibration Prediction in Milling Process by Using Neural Network (신경회로망을 이용한 밀링 공정의 진동 예측)

  • 이신영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2003
  • In order to predict vibrations occurred during end-milling processes, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting state. Specific cutting force constants of the cutting dynamics model were obtained by averaging cutting forces. Tool diameter, cutting speed, fled, axial and radial depth of cut were considered as machining factors in neural network model of cutting dynamics. Cutting farces by test and by neural network simulation were compared and the vibration displacement during end-milling was simulated.

THE SCATTERING OF RADIATION IN PLANE-PARALLEL DUST LAYERS (평행평면의 성간먼지층에 의한 복사광의 산란)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.31-35
    • /
    • 2008
  • We present analytical approximations for calculating the scattering and escape of non-ionizing photons from a plane-parallel medium with uniformly illuminated by external sources. We compare the results with the case of a spherical dust cloud. It is found that more scattering and absorption occur in the plane-parallel geometry than in the spherical geometry when the optical depth perpendicular to the plane and the radial optical depth of the sphere are the same. The results can provide an approximate way to estimate radiative transfer in a variety interstellar conditions and can be applied to the dust-scattered diffuse Galactic light.