• Title/Summary/Keyword: Radial Basis Function (RBF) Neural Network

Search Result 116, Processing Time 0.035 seconds

Interval type-2 fuzzy radial basis function neural network (Interval 제 2 종 퍼지 radial basis function neural network)

  • Choe, Byeong-In;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF

Design of RBF-based Polynomial Neural Network (방사형 기저 함수 기반 다항식 뉴럴네트워크 설계)

  • Kim, Ki-Sang;Jin, Yong-Ha;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.261-263
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 각 노드의 후반부 파라미터들은 최소자승법을 이용하여 최적화 하였다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

Radial Basis Function Neural Network for Power System Transient Energy Margin Estimation

  • Karami, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.468-475
    • /
    • 2008
  • This paper presents a method for estimating the transient stability status of the power system using radial basis function(RBF) neural network with a fast hybrid training approach. A normalized transient energy margin(${\Delta}V_n$) has been obtained by the potential energy boundary surface(PEBS) method along with a time-domain simulation technique, and is used as an output of the RBF neural network. The RBF neural network is then trained to map the operating conditions of the power system to the ${\Delta}V_n$, which provides a measure of the transient stability of the power system. The proposed approach has been successfully applied to the 10-machine 39-bus New England test system, and the results are given.

Inverse Estimation of Surface Temperature Using the RBF Network (RBF Network 를 이용한 표면온도 역추정에 관한 연구)

  • Jung, Bup-Sung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1183-1188
    • /
    • 2004
  • The inverse heat conduction problem (IHCP) is a problem of estimating boundary condition from temperature measurement at one or more interior points. Neural networks are general information processing systems inspired by the connectionist theory of human brain. By properly training the network by the learning rule, the neural network method can handle many non-linear or other complex problems. In this work, neural network is applied to complicated inverse heat conduction problems. Efficiency of the procedure is enhanced by incorporating the radial basis functions (RBF). The RBF is trained faster than other neural network and can find smooth solution. In order to demonstrate the effectiveness of the current scheme, a typical one-dimensional IHCP is considered. At one surface, the temperature as well as the heat flux is known. The unknown temperature of interest is estimated on the other side of the slab. The results from the proposed method based on RBF neural network are compared with the conventional method.

  • PDF

RBF Network Structure for Prediction of Non-linear, Non-stationary Time Series (비선형, 비정상 시계열 예측을 위한 RBF(Radial Basis Function) 회로망 구조)

  • Kim, Sang-Hwan;Lee, Jong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.168-175
    • /
    • 1999
  • In this paper, a modified RBF(Radial Basis Function) network structure is suggested for the prediction of a time-series with non-linear, non-stationary characteristics. Coventional RBF network predicting time series by using past outputs sense the trajectory of the time series and react when there exists strong relation between input and hidden activation function's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden activation functions are modified to react to the increments of input variable and multiplied by increment(or dectement) for prediction. When the suggested structure is applied to prediction of Macyey-Glass chaotic time series, Lorenz equation, and Rossler equation, improved performances are obtained.

  • PDF

Design of RBF-based Polynomial Neural Network And Optimization (방사형 기저 함수 기반 다항식 뉴럴네트워크 설계 및 최적화)

  • Kim, Ki-Sang;Jin, Yong-Ha;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1863_1864
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 입력개수, 입력변수, 클러스터의 개수를 PSO알고리즘(Particle Swarm Optimization)을 사용하여 최적화 시켰다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

RBF Neural Network Sturcture for Prediction of Non-linear, Non-stationary Time Series (비선형, 비정상 시계열 예측을 위한RBF(Radial Basis Function) 신경회로망 구조)

  • Kim, Sang-Hwan;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2299-2301
    • /
    • 1998
  • In this paper, a modified RBF (Radial Basis Function) neural network structure is suggested for the prediction of time series with non-linear, non-stationary characteristics. Conventional RBF neural network predicting time series by using past outputs is for sensing the trajectory of the time series and for reacting when there exists strong relation between input and hidden neuron's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden neurons are modified to react to the increments of input variable and multiplied by increments(or decrements) of out puts for prediction. When the suggested structure is applied to prediction of Lorenz equation, and Rossler equation, improved performances are obtainable.

  • PDF

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

An Identification Technique Based on Adaptive Radial Basis Function Network for an Electronic Odor Sensing System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.151-155
    • /
    • 2011
  • A variety of pattern recognition algorithms including neural networks may be applicable to the identification of odors. In this paper, an identification technique for an electronic odor sensing system applicable to wound state monitoring is presented. The performance of the radial basis function(RBF) network is highly dependent on the choice of centers and widths in basis function. For the fine tuning of centers and widths, those parameters are initialized by an ill-conditioned genetic fuzzy c-means algorithm, and the distribution of input patterns in the very first stage, the stochastic gradient(SG), is adapted. The adaptive RBF network with singular value decomposition(SVD), which provides additional adaptation capabilities to the RBF network, is used to process data from array-based gas sensors for early detection of wound infection in burn patients. The primary results indicate that infected patients can be distinguished from uninfected patients.