• Title/Summary/Keyword: Radial Basis Function(RBF) network

Search Result 146, Processing Time 0.025 seconds

Simplified RBF Multiuser Receivers of Synchronous DS-CDMA Systems (Synchronous DS-CDMA 시스템에서의 간략화된 RBF 다중사용자 수신기)

  • 고균병;이충용;강창언;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.555-560
    • /
    • 2003
  • For synchronous direct sequence-code division multiple access (DS-CDMA) systems, the authors propose an adaptive radial basis function (RBF) receiver with suboptimal structure that reduces not only the complexity with regard to the number of centers but also the quantity of instructions required per one bit reception. The proposed receiver is constructed with parallel RBF networks. Each RBF network has the same procedure as the conventional RBF receiver. The performance of each RBF network is affected by interferences which are assigned to the other RBF networks because neither RBF network uses the full user set. To combat these interferences, the partial IC technique is employed. Monte Carlo simulations over additive white Gaussian noise (AWGN) channels confirm that the proposed receiver with its reduced complexity is able to obtain near-optimum performance. Moreover, the proposed receiver is able to properly cope with a various environment.

Structural Design of Radial Basis function Neural Network(RBFNN) Based on PSO (PSO 기반 RBFNN의 구조적 설계)

  • Seok, Jin-Wook;Kim, Young-Hoon;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.381-383
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계하고 모델을 최적화하기 위하여 최적화 알고리즘인 PSO(Particle Swarm Optimization) 알고리즘을 이용하였다. 즉, 모델의 최적화에 주요한 영향을 미치는 모델의 파라미터들을 PSO 알고리즘을 이용하여 동정한다. 제안된 RBF 뉴럴 네트워크는 은닉층에서의 활성함수로서 일반적으로 많이 사용되어지는 가우시안 커널함수를 사용한다. 더 나아가 모델의 최적화를 위하여 각 커널함수의 중심값은 HCM 클러스터링에 기반을 두어 중심값을 결정하고, PSO 알고리즘을 통하여 가우시안 커널함수의 분포상수, 은닉층에서의 노드 수 그리고 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 Mackey-Glass 시계열 공정 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

A new neural linearizing control scheme using radial basis function network (Radial basis function 회로망을 이용한 새로운 신경망 선형화 제어구조)

  • Kim, Seok-Jun;Lee, Min-Ho;Park, Seon-Won;Lee, Su-Yeong;Park, Cheol-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.526-531
    • /
    • 1997
  • To control nonlinear chemical processes, a new neural linearizing control scheme is proposed. This is a hybrid of a radial basis function(RBF) network and a linear controller, thus the control action applied to the process is the sum of both control actions. Firstly, to train the RBF newtork a linear reference model is determined by analyzing the past operating data of the process. Then, the training of the RBF newtork is iteratively performed to minimize the difference between outputs of the process and the linear reference model. As a result, the apparent dynamics of the process added by the RBF newtork becomes similar to that of the linear reference model. After training, the original nonlinear control problem changes to a linear one, and the closed-loop control performance is improved by using the optimum tuning parameters of the linear controller for the linear dynamics. The proposed control scheme performs control and training simultaneously, and shows a good control performance for nonlinear chemical processes.

  • PDF

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

A Robust Learning Algorithm for System Identification (외란을 포함한 학습 데이터에 강인한 시스템 모델링)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.200-200
    • /
    • 2000
  • Highly nonlinear dynamical systems are easily identified using neural networks. When disturbances are included in the learning data set Int system modeling, modeling process will be poorly performed. Since the radial basis functions in the radial basis function network(RBFN) are centered at the points specified by the weights, RBF networks are robust for approximating the process including the narrow-band disturbances deviating significantly from the regular signals. To exclude(filter) these disturbances, a robust algorithm for system identification, based on the RBFN, is proposed. The performance of system identification excluding disturbances is investigated and compared with the one including disturbances.

  • PDF

Daily Electric Load Forecasting Based on RBF Neural Network Models

  • Hwang, Heesoo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.39-49
    • /
    • 2013
  • This paper presents a method of improving the performance of a day-ahead 24-h load curve and peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF) neural network models built using the best design parameters. To improve the forecasting accuracy, the load curve forecasted using the RBF network models is corrected by the weighted sum of both the error of the current prediction and the change in the errors between the current and the previous prediction. The optimal weights (called "gains" in the error correction) are identified by differential evolution. The peak load forecasted by the RBF network models is also corrected by combining the load curve outputs of the RBF models by linear addition with 24 coefficients. The optimal coefficients for reducing both the forecasting mean absolute percent error (MAPE) and the sum of errors are also identified using differential evolution. The proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange. Simulation results reveal satisfactory forecasts: 1.230% MAPE for daily peak load and 1.128% MAPE for daily load curve.

Nonlinear Multilayer Combining Techniques in Bayesian Equalizer Using Radial Basis Function Network (RBFN을 이용한 Bayesian Equalizer에서의 비선형 다층 결합 기법)

  • 최수용;고균병;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.452-460
    • /
    • 2003
  • In this paper, an equalizer(RNE) using nonlinear multilayer combining techniques in Bayesian equalizer with a structure of radial basis function network is proposed in order to simplify the structure and enhance the performance of the equalizer(RE) using a radial basis function network. The conventional RE Produces its output using linear combining the outputs of the basis functions in the hidden layer while the proposed RNE produces its output using nonlinear combining the outputs of the basis function in the first hidden layer. The nonlinear combiner is implemented by multilayer perceptrons(MLPs). In addition, as an infinite impulse response structure, the RNE with decision feedback equalizer (RNDFE) is proposed. The proposed equalizer has simpler structure and shows better performance than the conventional RE in terms of bit error probability and mean square error.

A Practical Radial Basis Function Network and Its Applications

  • Yang, S.Q.;Jia, C.Y.
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.297-300
    • /
    • 2001
  • Artificial neural networks have become important tools in many fields. This paper describes a new algorithm fur training an RBF network. This algorithm has two main advantages: higher accuracy and a too stable learning process. In addition, it can be used as a good classifier in pattern recognition.

  • PDF

A Study on Hybrid Structure of Semi-Continuous HMM and RBF for Speaker Independent Speech Recognition (화자 독립 음성 인식을 위한 반연속 HMM과 RBF의 혼합 구조에 관한 연구)

  • 문연주;전선도;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.94-99
    • /
    • 1999
  • It is the hybrid structure of HMM and neural network(NN) that shows high recognition rate in speech recognition algorithms. And it is a method which has majorities of statistical model and neural network model respectively. In this study, we propose a new style of the hybrid structure of semi-continuous HMM(SCHMM) and radial basis function(RBF), which re-estimates weighting coefficients probability affecting observation probability after Baum-Welch estimation. The proposed method takes account of the similarity of basis Auction of RBF's hidden layer and SCHMM's probability density functions so as to discriminate speech signals sensibly through the learned and estimated weighting coefficients of RBF. As simulation results show that the recognition rates of the hybrid structure SCHMM/RBF are higher than those of SCHMM in unlearned speakers' recognition experiment, the proposed method has been proved to be one which has more sensible property in recognition than SCHMM.

  • PDF

Forecasting of Runoff Hydrograph Using Neural Network Algorithms (신경망 알고리즘을 적용한 유출수문곡선의 예측)

  • An, Sang-Jin;Jeon, Gye-Won;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.505-515
    • /
    • 2000
  • THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.

  • PDF