• Title/Summary/Keyword: Radar system

Search Result 1,607, Processing Time 0.024 seconds

Case Study of the Precipitation System Occurred Around Cheongju Using Convective/Stratiform Radar Echo Classification Algorithm (레이더 반사도 유형분류 알고리즘을 이용한 청주 부근에서 관측된 강우시스템의 사례 분석)

  • Nam, Kyung-Yeub;Lee, Jeong-Seog;Nam, Jae-Cheol
    • Atmosphere
    • /
    • v.15 no.3
    • /
    • pp.155-165
    • /
    • 2005
  • The characteristics of six precipitation systems occurred around Cheongju in 2002 are analyzed after the convective/stratiform radar echo classification using radar reflectivity from the Meteorological Research Institute"s X-band Doppler weather radar. The Biggerstaff and Listemaa (2000) algorithm is applied for the classification and reveals a physical characteristics of the convective and stratiform rain diagnosed from the three-dimensional structure of the radar reflectivity. The area satisfying the vertical profile of radar reflectivity is well classified, while the area near the radar site and the topography-shielded area show a mis-classification. The seasonal characteristics of the precipitation system are also analyzed using the contoured frequency by altitude diagrams (CFADs). The heights of maximum reflectivity are 4 km and 5.5 km in spring and summer, respectively, and the vertical gradient of radar reflectivity from 1.5 km to the melting layer in spring is larger than in summer.

A Study on Radar Absorbing Structure for Aircraft (항공기용 전파흡수 구조 연구)

  • Han, Won-Jae;Jang, Byung-Wook;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.24-28
    • /
    • 2010
  • The purpose of this study is to define available microwave absorbing structure for aircraft from in the X-band(8.2~12.4GHz) frequencies. The electromagnetic wave absorption or shielding techniques is an important issue not only for military purpose but also for commercial purposes. Aircraft Radar Absorbing Structure(RAS) is absorbed or scattered propagation waves from the enemy radar. There are absorbing technologies at shaping design techniques and using Radar Absorbing Materials(RAM). RAM is more important because shaping design can't include perfect radar absorbing performance. In this study, based on material properties was introduced RAM and to analyze the each characteristics. Finally, we comparison appropriate RAM for aircraft.

  • PDF

Construction and Experiment of an Educational Radar System (교육용 레이다 시스템의 제작 및 실험)

  • Ji, Younghun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.293-302
    • /
    • 2014
  • Radar systems are used in remote sensing mainly as space-borne, airborne and ground-based Synthetic Aperture Radar (SAR), scatterometer and Doppler radar. Those systems are composed of expensive equipments and require expertise and professional skills for operation. Because of the limitation in getting experiences of the radar and SAR systems and its operations in ordinary universities and institutions, it is difficult to learn and exercise essential principles of radar hardware which are essential to understand and develop new application fields. To overcome those difficulties, in this paper, we present the construction and experiment of a low-cost educational radar system based on the blueprints of the MIT Cantenna system. The radar system was operated in three modes. Firstly, the velocity of moving cars was measured in Doppler radar mode. Secondly, the range of two moving targets were measured in radar mode with range resolution. Lastly, 2D images were constructed in GB-SAR mode to enhance the azimuth resolution. Additionally, we simulated the SAR raw data to compare Deramp-FFT and ${\omega}-k$ algorithms and to analyze the effect of antenna positional error for SAR focusing. We expect the system can be further developed into a light-weight SAR system onboard a unmanned aerial vehicle by improving the system with higher sampling frequency, I/Q acquisition, and more stable circuit design.

A Development of Remote Bird Observation System Using FMCW RADAR (FMCW 레이더를 이용한 원격 조류(鳥類) 관측 시스템 개발)

  • Lee, Hee-Yong;Hwang, Hun-Gyu;Choi, Myung-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.247-256
    • /
    • 2014
  • Recently, camera and RADAR are used for more effective and accurate observation of the bird migration. In recent years, many researches on the bird migration using RADAR are undertaking and in active, thus causes the advent of "RADAR ornithology" as a new academic field. Due to the lack of accessibility, economic feasibility and mobility of weather RADAR, airport searching RADAR and tracking RADAR, Nowadays, a marine RADAR is widely used for a bird observation. In this paper, we deals with a study on development of a remote bird observation system using marine FMCW RADAR, which monitors, records and analyzes bird movement by RADAR image processing and target recognition technology. Also, we conduct first test and second test for availability of the developed system, and verify the system to apply in bird observation domain. Consequently, we figured problems out, and correct the problems to improve the system. The developed system can apply in other domains such as environment evaluation. In the future, the system needs to improve accuracy of statistics and to track migration route of bird.

A Development of Missile System Test Equipment for Ku-Band Radar Altimeter (Ku대역 전파고도계 체계점검장비 개발)

  • Kim, Taehoon;Jeong, Jinseob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.808-815
    • /
    • 2015
  • For performance improving of C-band radar altimeter used in a missile system, Ku-band radar altimeter is developed. To utilize the time delay devices which are used in testing C-band radar altimeter, we proposed C-band and Ku-band frequency conversion method and implemented it as a part of missile system test equipment. In this paper we present design contents, development results and test application results of radar altimeter test equipments.

Improved object recognition performance of UWB radar according to different window functions

  • Nguyen, Trung Kien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.395-402
    • /
    • 2019
  • In this paper, we implemented an Ultra-Wideband radar system using Stripmap Synthetic Apertrure Radar algorithm to recognize objects inside a box. Different window functions such as Hanning, Hamming, Kaiser, and Taylor functions to improve image recognition performance are applied and implemented to radar system. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to recognize the conductor plate located inside 1m3 box. To obtain the image, we use the propagation data in the time domain according to the 1m movement distance and use the Range Doppler algorithm. The effect of different window functions to improve the recognition performance of the image are analyzed. From the compared results, we confirmed that the Kaiser window function can obtain a relatively good image.

A Data Processing System on the Transportable Meteorological Radar (이동식 기상 레이더 자료 시스템 개발)

  • 이채욱;오신범
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.44-50
    • /
    • 2000
  • This paper presents the effective data processing system of a transportable meteorological radar(DWSR-200x). Transportable meteorological radar is useful as it can be moved to target area for special purpose. First of all, to use this radar effectively, it is desirable that the data transmitting should be taken place between the radar system and the data center located in a distance. From this raw data we can analyze the property of atmosphere, as well as sore and display the demanded shape of users. In this paper, we make use of wireless LAN that communicates the data between the radar system and the information center. And the display program of transportable radar is developed with transmitted data. It provides meteorologists with the echo searching function in real time and dictionary faculty using the graphic and multimedia data.

  • PDF

Remote monitoring of the breaking ocean waves by a marine X-band radar in Yongho Man, Busan (부산 용호만에서 선박용 X-band 레이더에 의한 쇄파의 원격 모니터링)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.3
    • /
    • pp.227-234
    • /
    • 2012
  • This paper describes the remote monitoring of breaking ocean waves generated by Typhoon Nabi, whose name means butterfly in Korean, using a marine X-band radar in the Yongho Man, Busan, Korea. The basic purpose of this study is to investigate the dynamic behavior and to estimate the periods of breaking waves across the surf zone from radar image sequences. In these experiments, the land-based radar system imaged the inshore zone of three miles from the coastline to a isobath of 30 meters. The wave period and the dominant wave direction for breaking ocean waves extracted directly from radar image sequences were 157.4 meters and 298 degrees, respectively. However, the result calculated quantitatively by the continuous wavelet transform (CWT) showed that the period of breaking waves was 154.3 meters. The average difference in breaking wave periods between the value extracted by using EBRL (electronic bearing and range line) of radar and the calculated value by CWT was 3.1 meters, showing that the CWT method is also accurate. These results suggest that a marine X-band radar system is a viable method of monitoring the breaking ocean waves.

X-band CW Doppler Radar Development for Measurement of Muzzle Velocity (포구 속도 측정을 위한 X-band CW 도플러 레이더 개발)

  • Kim, Jae-Heon;Koh, Yeong-Mok;NamGung, Sung-Won;Jang, Yong-Sik;Park, Yong-Seok;Ra, Keuk-Hwan;Choi, Ik-Kwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.460-470
    • /
    • 2009
  • In this paper, we described the implementation of the X-Band continuous-wave doppler radar for muzzle velocity measurement. The radar is consisted of microwave transceiver, signal processor, power board, and the measuring program was developed for the operating and field test. The operating frequency of doppler radar is able to set ${\pm}3\;MHz$ with 5 channel from the center frequency, and the output power is 25 dBm. The minimum receiving power is -117 dBm. The radar would obtain the doppler frequency from the artillery, and calculate accurate velocity point and then estimate muzzle velocity. The performance test for this radar was done with 155 mm at barrel and tripod mounted, and also compared the performance with the reference radar. As a result, the performance of the our new radar is equal with the reference one.

A Study on the Characteristics of Heavy Rainfalls in Chungcheong Province using Radar Reflectivity (레이더 자료를 이용한 충청지역 집중호우 사례 특성 분석)

  • Song, Byung-Hyun;Nam, Jae-Cheol;Nam, Kyung-Yub;Choi, Ji-Hye
    • Atmosphere
    • /
    • v.14 no.1
    • /
    • pp.24-43
    • /
    • 2004
  • This paper describes the detailed characteristics of heavy rainfall events occurred in Chungcheong province on 15 and 16 April and from 6 to 8 August 2002 based on the analysis of raingauge rainfall rate and radar reflectivity from the METRI's X-band Weather Radar located in Cheongju. A synoptic analysis of the case is carried out, first, and then the analysis is devoted to seeing how the radar observes the case and how much information we obtain. The highly resolved radar reflectivity of horizontal and vertical resolutions of 1 km and 500 m, respectively shows a three-dimensional structure of the precipitating system, in a similar sequence with the ground rainfall rate. The radar echo classification algorithm for convective/stratiform cloud is applied. In the convectively-classified area, the radar reflectivity pattern shows a fair agreement with that of the surface rainfall rate. This kind of classification using radar reflectivity is considered to be useful for the precipitation forecasting. Another noteworthy aspect of the case includes the effect of topography on the precipitating system, following the analysis of the surface rainfall rate, topography, and precipitating system. The results from this case study offer a unique opportunity of the usefulness of weather radar for better understanding of structural and variable characteristics of flash flood-producing heavy rainfall events, in particular for their improved forecasting.