• Title/Summary/Keyword: Radar modulation

Search Result 94, Processing Time 0.022 seconds

A Study on Radar Image Simulation for Ocean Waves Using Radar Received Power (파랑에 관한 레이더 이미지 시뮬레이션을 위한 레이더 수신 출력 도입 기법 연구)

  • Park, Jun-Soo;Yang, Young-Jun;Park, Seung-Gun;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • This study presents a modified scheme for the radar image simulation of sea waves. A simulated radar image was obtained by taking into account the dot product of the directed vector from the radar and the normal vector of the sea surface. Moreover, to calculate the radar image, we used the radar received power and radar cross section. To demonstrate the effectiveness of the proposed scheme, the wave spectrum from field data was utilized to obtain the simulated sea waves. The radar image was simulated using numerically generated sea waves. The wave statistics from the simulation agrees comparatively with those of the original field data acquired by real radar measurements.

Localization of Jet Engine Position from HRRP-JEM Images of Aircraft Targets Using Eccentricity of Complex-Valued Signals (항공기 표적의 HRRP-JEM 영상에서 복소 신호의 이심률을 이용한 제트 엔진 위치 추정)

  • Park, Ji-Hoon;Yang, Woo-Yong;Bae, Jun-Woo;Kang, Seong-Cheol;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1173-1180
    • /
    • 2013
  • High Resolution Range Profile-Jet Engine Modulation imagery first introduced in 2005 carries out radar target recognition by localizing the position of the jet engine installed on the aircraft target. This paper presents a new approach for estimating the jet engine position in the HRRP-JEM image based on the eccentricity of a complex signal. It can effectively evaluate the contribution of the JEM component to the radar received signal in a range bin of the HRRP-JEM image. Therefore, the localization is expected to be performed more quantitatively and reliably by pinpointing the range bin corresponding to the jet engine position where the JEM contribution is maximized. The simulation results of realistic aircraft models validated the effectiveness of the proposed concept.

Simple Method for Improving the Frequency Sweep Linearity of FMCW Collision Warning Radar (차량 충돌방지용 FMCW 레이더의 주파수 Sweep 선형성 개선을 위한 간단한 기법)

  • Hyun, Eu-Gin;Oh, Woo-Jin;Lee, Jong-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1109-1115
    • /
    • 2010
  • FMCW(Frequency Modulation Continuous Wave) Radar can detect the distance and the velocity of forward obstacles using linearly modulated FM signal. For better performance, the RF of radar should be operated with wideband frequency linearity on 300 MHz bandwidth at 77 GHz carrier frequency. In this paper, we propose a simple method for improving frequency linearity of FMCW radar implemented with VCO. The proposed method shows that the Voltage-Frequency relation of VCO could be measured by using the modified Tx waveform of FMCW radar. Then the measured nonlinearity could be compensated using LUT(Look-up Table) with easy. It is noted that the proposed can be adopted in existing system without extra circuit.

ISAR Imaging Using Rear View Radars of an Automobile (후방 감시 차량용 레이다를 이용한 ISAR 영상 형성)

  • Kang, Byung-Soo;Lee, Hyun-Seok;Lee, Seung-Jae;Kang, Min-Suk;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.245-250
    • /
    • 2014
  • This paper introduces the inverse synthetic aperture radar(ISAR) imaging technique for rear view target of an automobile, which uses both linear frequency modulation-frequency shift keying(LFM-FSK) waveform and monopulse tracking. LFM-FSK waveform consists of two sequential stepped frequency waveforms with some frequency offset, and thus, can be used to generate ISAR images of rear view target of an automobile. However, ISAR images can often be blurred due to non-uniform change rate of relative aspect angle between radar and target. In order to address this problem, one-dimensional(1-D) Lagrange interpolation technique in conjunction with angle information obtained from the monopulse tracking is applied to generate uniform data across the radar's aspect angle. Simulation results show that the proposed method can provide focused ISAR images.

A Study on Barker Code of Radar Pulse Compression Technique (레이더 펄스 압축 기술의 Barker Code에 관한 연구)

  • Kim, Min-Soo;Koo, Ryung-Seo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.541-547
    • /
    • 2013
  • Range resolution is important performance parameter to distinguish a target accurately. The destination of modern radar systems, to overcome the limitations of existing analog radar systems, is to improve the range resolution of the distance with low transmission power. For that reason, the research on pulse compression techniques is briskly studying. In the Receiver, modulation system of transmitted signal which has used in pulse compression technique is divided PM and FM to distinguish a target. In this paper, We analysed and designed the pulse compression signal processing module using the Baker Code which is the one of PM method's.

A Study on Multi-Site Radar Operations Based on LFM Signal (LFM 신호에 기반한 다중국소 레이더 운영에 관한 연구)

  • Suh, Kyoung-Whoan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2015
  • As one of solutions to obtain efficient use of limited spectrum resource, we suggest a methodology for the co-channel multi-site radar operations with a shifted linear frequency modulation (SLFM) based on GPS clock. The proposed algorithm is that we find a candidate set of SLFM signals with the minimum acceptable level of the correlation from the cross-correlation characteristics among selected SLFM signals. To verify the proposed methodology, numerical analysis has been accomplished for several radars operating in the same channel with a sawtooth or triangle LFM signal. The computational results of detected distances as well as range profiles are also examined for interference, noise, and algorithm limitation including the error of clock synchronization.

Improvement of Abnormal Altitude Display of Radar Altimeter by Using Attenuation of Received Interference (수신 간섭의 신호 감쇠를 통한 전파고도계의 비정상 고도 시현 개선)

  • Kwon, Jung-Hyuk;Oh, Seung-Hyun;Seo, Byung-Il;Lee, Wang-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • The purpose of this paper was to study how to improve the occurrence of abnormal altitude values of radio altimeter, due to RF interference signals during the flight of aircraft. In flight missions, since it performs a roll-out after several high maneuvers, accurate altitude must be displayed to effectively perform flight missions. Thus, a root cause analysis and trouble shooting were performed for the display of abnormal altitude values of radar altimeters, and a method of reducing RF interference signals by installing an attenuator was examined. Additionally, the verification results for the improvements are also described.

Implementation of VGPO/VGPI Velocity Deception Jamming Technique using Phase Sampled DRFM (위상 샘플방식 DRFM을 이용한 VGPO/VGPI 속도기만 재밍기법 구현)

  • Kim, Yo-Han;Moon, Byung-Jin;Hong, Sang-Guen;Sung, Ki-Min;Jeon, Young-Il;Na, In-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.955-961
    • /
    • 2021
  • In modern warfare, the importance of electronic warfare, which carries out a mission that using radio wave to find out enemy information or to protect ally information, has increased. Radar jamming technique is one of the most representative techniques of EA(Electronic Attack), it disturbs and deceives enemy radar system in order to secure ally location information. Velocity deception jamming technique, which is one of the radar jamming techniques, generally operate against pulse-doppler radar which use doppler effect in order to track target's velocity and location. Velocity Deception Jamming Technique can be implemented using DRFM(Digital Radio Frequency Memory) that performs Frequency Modulation. In this paper, I describe implementation method of VGPO/VGPI(Velocity Gate Pull-Off/Pull-In) velocity deception jamming technique using phase-sampled DRFM, and verify the operation of VGPO/VGPI velocity deception jamming technique with board test under signal injection condition.

Architecture of Signal Processing Unit to Improve Range and Velocity Error for Automotive FMCW Radar (FMCW 레이더의 거리 및 속도 오차 향상을 위한 신호처리부 하드웨어 구조 제안)

  • Hyun, Eu-Gin;Lee, Jong-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.54-61
    • /
    • 2010
  • In this paper, we design the signal processing unit to effectively support the proposed algorithm for an automotive Frequency Modulation Continuous Wave(FMCW) radar. In the proposed method, we can obtain the distance and velocity with improved error depending on each range(long, middle, and short) of the target. Since a high computational capacity is required to obtain more accurate distance and velocity for target in near range, the proposed signal processing unit employs the time de-interleaving and the frequency interpolation method to overcome the limitation. Moreover, for real-time signal processing, the parallel architecture is used to extract simultaneously the distance and velocity in each range.

Development and Performance Analysis of Radar Signal Processing for Autonomous Unmanned Ground Vehicle (자율주행 무인차량용 레이더 신호처리부 개발 및 성능 분석)

  • Shin, Seung-Yong;Choi, Jun-Hyeok;Park, Sang-Hyun;Yeom, Dong-Jin;Kim, Jeong-Ryul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.514-522
    • /
    • 2013
  • In this paper, we present signal processing procedure and carry out performance analysis of FMCW(Frequency Modulation Continuous Wave) radar for Autonomous Unmanned Vehicle(AUV). In order to detect range profile and velocity of the unknown target, we must implement two step FFT(Fast Fourier Transform) procedure. And the DBF(Digital Beam Forming) algorithm has to be performed to obtain the angle information of the unknown target. To verify the performance of manufactured autonomous unmanned ground vehicle FMCW radar, we use the data of the real corner reflecter target.