• Title/Summary/Keyword: Radar images

Search Result 449, Processing Time 0.043 seconds

3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging (3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Yang, Eun-Jung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.564-571
    • /
    • 2015
  • In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.

Development of EM Wave Absorber for Millimeter Wave Radar (밀리미터 레이더용 전파흡수체 개발)

  • Choi Chang-Mook;Kim Dong-Il;Je Seung-Hun;Choi Yun-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.223-227
    • /
    • 2006
  • The millimeter-wave radar is positioned as a key, basic ITS technology supporting safe driving, because millimeter wave allows radar to see small distant objects. This system is considered the collision-avoidance radar available in some cars. This system employs poised radar operating within the frequency range $76\sim77GHz$. Radar systems create two major problems(false images and system-to-system interference). False echoes cause driving hazards. These problems can be eliminated through the use of EM wave absorber. Therefore, we designed and fabricated EM wave absorber using permalloy. It has the thickness of 1.4 mm with composition of permalloy:CPE=70:30 wt% and absorption ability higher than 18 dB in the frequency range $76\sim77GHz$.

  • PDF

Extraction of the ship movement information by a radar target extractor (Radar Target Extractor에 의한 선박운동정보의 추출에 관한 연구)

  • Lee, Dae-Jae;Kim, Kwang-Sik;Byun, Duck-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.249-255
    • /
    • 2002
  • This paper describes on the extraction of ship's real-time movement information using a combination full-function ARPA radar and ECS system that displays radar images and an electronic chart together on a single PC screen. The radar target extractor(RTX) board, developed by Marine Electronics Corporation of Korea, receives radar video, trigger, antenna bearing pulse and heading pulse signals from a radar unit and processes these signals to extract target information. The target data extracted from each pulse repetition interval in DSPs of RTX that installed in 16 bit ISA slot of a IBM PC compatible computer is formatted into a series of radar target messages. These messages are then transmitted to the host PC and displayed on a single screen. The position data of target in range and azimuth direction are stored and used for determining the center of the distributed target by arithmetic averaging after the detection of the target end. In this system, the electronic chart or radar screens can be displayed separately or simulaneously and in radar mode all information of radar targets can be recorded and replayed In spite of a PC based radar system, all essential information required for safe and efficient navigation of ship can be provided.

Construction and Experiment of an Educational Radar System (교육용 레이다 시스템의 제작 및 실험)

  • Ji, Younghun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.293-302
    • /
    • 2014
  • Radar systems are used in remote sensing mainly as space-borne, airborne and ground-based Synthetic Aperture Radar (SAR), scatterometer and Doppler radar. Those systems are composed of expensive equipments and require expertise and professional skills for operation. Because of the limitation in getting experiences of the radar and SAR systems and its operations in ordinary universities and institutions, it is difficult to learn and exercise essential principles of radar hardware which are essential to understand and develop new application fields. To overcome those difficulties, in this paper, we present the construction and experiment of a low-cost educational radar system based on the blueprints of the MIT Cantenna system. The radar system was operated in three modes. Firstly, the velocity of moving cars was measured in Doppler radar mode. Secondly, the range of two moving targets were measured in radar mode with range resolution. Lastly, 2D images were constructed in GB-SAR mode to enhance the azimuth resolution. Additionally, we simulated the SAR raw data to compare Deramp-FFT and ${\omega}-k$ algorithms and to analyze the effect of antenna positional error for SAR focusing. We expect the system can be further developed into a light-weight SAR system onboard a unmanned aerial vehicle by improving the system with higher sampling frequency, I/Q acquisition, and more stable circuit design.

SAR Clutter Image Generation Based on Measured Speckles and Textures (지표면 별 영상잡음과 영상질감을 이용한 SAR 클러터 영상 생성)

  • Kwon, Soon-Gu;Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.375-381
    • /
    • 2009
  • In this paper, synthetic aperture radar (SAR) clutter images are simulated based on the extensive analyses for radar backscatter characteristics of various earth surfaces, and the simulated images are compared with measured SAR images. At first, the surface parameters including soil moisture content and surface roughness parameters and other parameters for vegetation canopies are measured for various surfaces. The backscattering coefficients for the surfaces are computed using theoretical and empirical models for surface scattering and the radiative transfer for vegetation-canopy scattering. Then, the digital elevation map (DEM) and land cover map (LCM) are used for the SAR image generation. The SAR impulse response (correlation function) is also employed to simulated reliable SAR images. Finally, the appropriate speckle and texture parameters for various earth surfaces are used for generating the SAR clutter images.

Improvement of Radar Images Using Time-Frequency Transform (시간-주파수 영역 해석법을 이용한 레이더 영상 품질 개선에 대한 연구)

  • Jung, Sang-Won;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, an efficient algorithm is developed to perform target rotational motion compensation to achieve the clear inverse synthetic aperture radar(ISAR) image. The algorithm is based on a time-frequency technique. This algorithm provides an efficient method to resolve the blurring image caused by the time-varying behavior of the target scattering centers and leads to a well-focused ISAR image. Results demonstrate that the time-frequency techniques can improve the blurring ISAR image when an aircraft is in complex motion, such as maneuvering, rotation and acceleration.

Rain Cell Size Distribution Using Radar Data During Squall Line Episodes (레이더 자료를 이용한 강우입자분포의 통계적 분석 연구)

  • Ricardo S. Tenorio;Kwon, Byung-Hyuk;Lee, Dong-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.971-976
    • /
    • 2000
  • The main objective of this paper is to present the rain cell size distribution observed during squall line episodes in the Sudano-Sahelian region. The used data were collected during the EPSAT Program [Etude des Precipitation par SATellite (Satellites Study of Precipitation)] which has been developed since 1958, on an experimental area located near Niamey, Niger (2 10′32"E, 13 28′38"N). The data were obtained with a C-band radar and a network composed of approximately 100 raingages over a 10,000 $\textrm{km}^2$. In this work a culling of the squall line episodes was made for the 1992 rainy season. After radar data calibration using the raingage network a number of PPI (Plan Position Indicator) images were generated. Each image was then treated in order to obtain a series of radar reflectivity (Z) maps. To describe the cell distribution, a contouring program was used to analyze the areas with rain rate greater than or equal to the contour threshold (R$\geq$$\tau$). 24700 contours were generated, where each iso-pleth belongs to a predefined threshold. Computing each cell surface and relating its area to an equi-circle (a circle having the same area as the cell), a statistical analysis was made. The results show that the number of rain cells having a given size is an inverse exponential function of the equivalent radius. The average and median equivalent radii ate 1.4 and 0.69 In respectively. Implications of these results for the precipitation estimation using threshold methods are discussed.

  • PDF

Chaff Echo Detecting and Removing Method using Naive Bayesian Network (나이브 베이지안 네트워크를 이용한 채프에코 탐지 및 제거 방법)

  • Lee, Hansoo;Yu, Jungwon;Park, Jichul;Kim, Sungshin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.901-906
    • /
    • 2013
  • Chaff is a kind of matter spreading atmosphere with the purpose of preventing aircraft from detecting by radar. The chaff is commonly composed of small aluminum pieces, metallized glass fiber, or other lightweight strips which consists of reflecting materials. The chaff usually appears on the radar images as narrow bands shape of highly reflective echoes. And the chaff echo has similar characteristics to precipitation echo, and it interrupts weather forecasting process and makes forecasting accuracy low. In this paper, the chaff echo recognizing and removing method is suggested using Bayesian network. After converting coordinates from spherical to Cartesian in UF (Universal Format) radar data file, the characteristics of echoes are extracted by spatial and temporal clustering. And using the data, as a result of spatial and temporal clustering, a classification process for analyzing is performed. Finally, the inference system using Bayesian network is applied. As a result of experiments with actual radar data in real chaff echo appearing case, it is confirmed that Bayesian network can distinguish between chaff echo and non-chaff echo.

Spatio-temporal soil moisture estimation using water cloud model and Sentinel-1 synthetic aperture radar images (Sentinel-1 SAR 위성영상과 Water Cloud Model을 활용한 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Sehoon;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.28-28
    • /
    • 2022
  • 본 연구는 용담댐유역을 포함한 금강 유역 상류 지역을 대상으로 Sentinel-1 SAR (Synthetic Aperture Radar) 위성영상을 기반으로 한 토양수분 산정을 목적으로 하였다. Sentinel-1 영상은 2019년에 대해 12일 간격으로 수집하였고, 영상의 전처리는 SNAP (SentiNel Application Platform)을 활용하여 기하 보정, 방사 보정 및 Speckle 보정을 수행하여 VH (Vertical transmit-Horizontal receive) 및 VV (Vertical transmit-Vertical receive) 편파 후방산란계수로 변환하였다. 토양수분 산정에는 Water Cloud Model (WCM)이 활용되었으며, 모형의 식생 서술자(Vegetation descriptor)는 RVI (Radar Vegetation Index)와 NDVI (Normalized Difference Vegetation Index)를 활용하였다. RVI는 Sentinel-1 영상의 VH 및 VV 편파자료를 이용해 산정하였으며, NDVI는 동기간에 대해 10일 간격으로 수집된 Sentinel-2 MSI (MultiSpectral Instrument) 위성영상을 활용하여 산정하였다. WCM의 검정 및 보정은 한국수자원공사에서 제공하는 10 cm 깊이의 TDR (Time Domain Reflectometry) 센서에서 실측된 6개 지점의 토양수분 자료를 수집하여 수행하였으며, 매개변수의 최적화는 비선형 최소제곱(Non-linear least square) 및 PSO (Particle Swarm Optimization) 알고리즘을 활용하였다. WCM을 통해 산정된 토양수분은 피어슨 상관계수(Pearson's correlation coefficient)와 평균제곱근오차(Root mean square error)를 활용하여 검증을 수행할 예정이다.

  • PDF

Speckle noise reduction in SAR images using an adaptive wavelet Shrinkage method

  • Kim, Kwang-Yong;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.303-307
    • /
    • 2002
  • Although Synthetic Aperture Radar(SAR) is a very powerful and attractive tool, automatic interpretation of SAR images is extremely difficult because of several reason. Spatially, speckle noise reduction in SAR images is important step to interpret the SAR image at the preprocessing step. The speckle noise in SAR images is modeled to be multiplicative, and therefore, a signal-dependent noise. So, it has deflated many image-denoising algorithms that are based on additive noise model. In this paper, we propose an adaptive wavelet shrinkage method for speckle noise reduction in SAR images by analyzing the high frequency level in detail. We first decompose minutely the high frequency level to analyze the noise level. And then, we determine the weighting threshold value per the level, and layer. Finally, using those weighting threshold, we produce the efficient wavelet shrinkage method. So, this method not only reduces the speckle noise, but also preserves image detail and sharpness.

  • PDF