• Title/Summary/Keyword: Radar cross section reduction

Search Result 36, Processing Time 0.023 seconds

A Study on the Effective Scattering Center Analysis for Radar Cross Section Reduction of Complex Structures (복합구조물의 RCS 저감을 위한 효율적 산란중심 해석에 관한 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.421-426
    • /
    • 2005
  • Scattering center extraction schemes for radar cross section reduction of large complex targets, like warships, was developed, which are an 1-D radar image method(range profile), and a direct analysis based on an object precision method. The analysis result of partial dihedral model shows that the presented direct analysis method is more efficient than the 1-D radar image method for scattering center extraction of interested targets, in terms of radar cross section reduction design, not signal processing. In order to verify the accuracy of the direct analysis method, a scattering center analysis of an naval weapon system was carried out, and the result was coincident with that of another well-known RCS analysis program. Finally, an analysis result of RCS and its scattering center of an 120m class warship-like model presented that the direct analysis method can be an efficient and powerful tools for radar cross section reduction of large complex targets.

Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures (다중반사 구조를 갖는 복합구조물의 RCS 감소를 위한 광대역 다층 전파흡수체 설계)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.445-450
    • /
    • 2007
  • An optimum design process of the broad-band multi-layered radar absorbing material, using genetic algorithm, is established for the radar cross section reduction of a complex target, which consists of multiple reflection structures, such as surface warships. It follows the successive process of radar cross section analysis, scattering center analysis, radar absorbing material design, and reanalysis of radar cross section after applying the radar absorbing material. It is demonstrated that it is very effective even in the optimum design of the multi-layer radar absorbing material. This results from the fact that the three factors, i.e.. the incident angle range, broad-band frequencies, and maximum thickness can be simultaneously taken into account by adopting the genetic algorithm.

Radar Cross Section Reduction by Planar Array of Dielectric Barrier Discharge Plasma under Atmospheric Pressure (평면 배열 유전체 장벽 방전 플라즈마 발생기의 대기압에서의 레이다 단면적 감소 효과)

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.646-652
    • /
    • 2017
  • The effect of plasma on mono-static radar cross section under atmospheric pressure is demonstrated when the dielectric barrier discharge actuator has plasma layer. The volume of plasma layer is increased by using planar array of electrodes. Because the incident wave has electric field which is perpendicular to the electrode array, the undesired effect on radar cross section caused by structure of plasma actuator is minimized. In experiments, mono-static radar cross section is measured at the frequencies from 2 GHz to 25 GHz. The generated plasma reduces the radar cross section at frequencies above 18 GHz, and the amount of reduction reaches to 8 dB in maximum. The reduction can be controlled by changing the peak-to-peak voltage from high voltage generator. The result shows the possibility of plasma as a flexible radar cross section controller.

Optimal Path Planning for UAVs to Reduce Radar Cross Section

  • Kim, Boo-Sung;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.54-65
    • /
    • 2007
  • Parameter optimization technique is applied to planning UAVs(Unmanned Aerial Vehicles) path under artificial enemy radar threats. The ground enemy radar threats are characterized in terms of RCS(Radar Cross Section) parameter which is a measure of exposure to the radar threats. Mathematical model of the RCS parameter is constructed by a simple mathematical function in the three-dimensional space. The RCS model is directly linked to the UAVs attitude angles in generating a desired trajectory by reducing the RCS parameter. The RCS parameter is explicitly included in a performance index for optimization. The resultant UAVs trajectory satisfies geometrical boundary conditions while minimizing a weighted combination of the flight time and the measure of ground radar threat expressed in RCS.

Development of RAM in Millimeter Wave Range for RF Stealth (RF 스텔스를 위한 밀리미터 RAM 개발)

  • Choi, Chang-Mook;Lim, Bong-Taeck;Ko, Kwang-Soob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.555-558
    • /
    • 2009
  • In this paper, stealth technology is investigated with RCS(Radar Cross Section) reduction to minimize detection range of retroreflective echoes from enemy. Most RCS reduction comes from shaping. RAM(Radar Absorbing Materials) are applied only in areas where there are special problems. Therefore, we designed and fabricated a RAM that has absorption ability higher than 17 dB at 94 GHz for RF stealth in millimeter wave range. As a result, detection range of enemy can be reduced in the 62 percent range by using a developed RAM.

  • PDF

SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION (공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계)

  • Jo, Y.M.;Choi, S.I.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.

Analysis of stealth design for naval vessels with wide band metamaterials (함정의 스텔스 설계를 위한 광대역 메타물질 적용 연구)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Song, Jee-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2206-2212
    • /
    • 2017
  • When it comes to naval surface warfare, the probability of detection is an important factor in survivability and the Radar Cross Section(RCS) is a major parameter. In this paper, the RCS reduction technology of the Radar Absorbing Material(RAM) method is carried out for the general frequency range for naval warfare. We set the analysis model with the simplified ship model and the wide band metamaterial which is high-tech radar absorbing materials is selected for the RAM method. The modeling of the wide band metamaterial composed of an MIK surface which has the wide band resonant properties and flexible substance and the electromagnetic absorptions and reflections of the wide band metamaterial has been simulated to explore the performance. Also, the wide band metamaterial is compared with the paint absorber to analyze RCS reduction in terms of RCS values.

A Study on a Dynamic Radar Cross Section Analysis Technique for a Surface Warship (수상함의 동적 레이더 반사면적 해석 기법 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Choi, Tae-Muk;Kim, Yun-Hwan;Cho, Dae-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.77-81
    • /
    • 2009
  • The radar cross section (RCS) of a warship is one of the most important design features in terms of her survivability in hostile environments. Ocean waves continuously changes the attitude of an objective warship to hostile radar and distorts the RCS as a result. This paper presents a dynamic RCS analysis technique and procedure that considers temporal ship motion. First, data sets are prepared for ship motions in 6 degrees of freedom, which are numerically simulated for an objective warship via frequency to time domain conversion with response amplitude operators and specified ocean wave spectra. Second, a series of RCS analysis models are transformed geometrically by referring to ship motion data sets. Finally, temporal RCS analyses are carried out with the RCS simulation code, SYSCOS. As an example, RCS analysis results are given for a virtual warship, which show that ship motions temporally change RCS values and cause RCS reduction compared with static value in terms of mean values.

A Study on Enclosed Mast Characteristics for Radar Cross-Section Reduction (레이더반사면적 감소를 위한 폐위형 마스트 특성 연구)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Hwang, Joon-Tae;Jeong, Seung-Jin;Kim, Jong-Chul;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.746-753
    • /
    • 2017
  • Radar Cross Section (RCS) is a factor directly related to survivability, and a design to reduce the presence of this factor is needed. The upper structure, guns, radar and so on are related to warship RCS, but radar RCS reduction is difficult because of complex shapes involved. In this paper, an enclosed mast, which is one modern method for reducing radar RCS, and the characteristics of an applied Frequency Selected Surface (FSS) are analyzed. The RCS reduction ability of an enclosed mast has been confirmed by comparing RCS analysis results for a general radar with that of an enclosed mast for available frequency according to FSS shape. The characteristics of the enclosed mast have also been studied by analyzing the elevation angle and slope of the mast. General radar RCS was high because of its complex shape, but low RCS was shown for the enclosed mast model, which had a simpler shape.

A Study on RCS(Radar Cross Section) Performance with Antenna Transmit Signal on/off in the X-band Incident Wave Environment (X-band 입사파 환경에서 안테나 송신 신호 on/off에 대한 RCS(Radar Cross Section) 성능에 관한 연구)

  • Jung, Euntae;Park, Jinwoo;Yu, Byunggil;Kim, Youngdam;Kim, Kichul;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • Many technologies are being studied to reduce the RCS(Radar Cross Section) of stealth aircraft. Most RCS-reduction technlogies correspond to platforms. It is important to identify factors that RCS performance through simulation analysis of aircraft Mounted equipment. In particular, there are no studies of RCS performance in the radar frequency band when antenna transmit signals are applied. In this paper, the RCS performance variation on the transmit signal on/off of antennas mounted on a stealth aircraft was verified. Antennas were selected for each frequency band and simulated analysis to the RCS performance changes during antenna transmitting signal. Finally, to verify the characteristics of the change in RCS performance, RCS test measurements on the low-profile antenna transmit signal on/off were performed. In addintion, antenna RCS test measurement was performed according to the change of transmit signal power output. As a result, it was confirmed that there is no change in RCS performance when an antenna transmit signal is applied.