• Title/Summary/Keyword: Radar System Design

Search Result 353, Processing Time 0.043 seconds

L-band Pulsed Doppler Radar Development for Main Battle Tank (전차 탑재 L-밴드 펄수 도플러 레이더 설계 및 제작)

  • Park, Gyu-Churl;Ha, Jong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.580-588
    • /
    • 2009
  • A Missile Warning Radar is an essential sensor for active protection system to detect antitank missile in all weather environments. This paper presents the design, development, and test results of L-band pulsed Doppler radar system for main battle tank. This radar system consists of 3 LRUs, which include antenna unit, transmitter and receiver unit and radar signal & data processing unit. The developed core technologies include the patch antenna, SSPA transmitter, coherent I/Q detector, DSP based Doppler FFT filter, adaptive CFAR, SIW tracking capability, and threat decision. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test.

Multi-Mode Radar System Model Design for Helicopter (헬기탑재 다중모드 레이다 시스템 모델 설계)

  • Kwag, Young-Kil;Bae, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.208-212
    • /
    • 2003
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the conceptual design results of the multi-mode pulsed Doppler radar system testbed model for helicopter. Due to the inherent flight nature of the hovering vehicle which is flying in low-altitude and low speed, as well as rapid maneuvering, the moving clutters from the platform should be suppressed by using a special MTD (Moving Target Detector) processing. For the multi-mode radar system model design, the flight parameters of the moving helicopter platform were assumed: altitude of 3 Km, average cruising velocity of 150knots. The multi-mode operation capability was applied such as short-range, medium-range, and long-range depending on the mission of the vehicle. The nominal detection ranges is 30 Km for the testbed experimental model, but can be expanded up to 75 Km for the long range weather mode. The detection probability of each mode is also compared in terms of the signal-to noise ratio of each mode, and the designed radar system specifications ate provided as a design results.

  • PDF

A Study on Radar Absorbing Structure for Aircraft (항공기용 전파흡수 구조 연구)

  • Han, Won-Jae;Jang, Byung-Wook;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.24-28
    • /
    • 2010
  • The purpose of this study is to define available microwave absorbing structure for aircraft from in the X-band(8.2~12.4GHz) frequencies. The electromagnetic wave absorption or shielding techniques is an important issue not only for military purpose but also for commercial purposes. Aircraft Radar Absorbing Structure(RAS) is absorbed or scattered propagation waves from the enemy radar. There are absorbing technologies at shaping design techniques and using Radar Absorbing Materials(RAM). RAM is more important because shaping design can't include perfect radar absorbing performance. In this study, based on material properties was introduced RAM and to analyze the each characteristics. Finally, we comparison appropriate RAM for aircraft.

  • PDF

Exploration of Buried Facilities by GPR (Ground Penetrating Radar를 사용한 지하설비 탐사에 관한 연구)

  • Shon, Su-Goog;Jeon, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.30-33
    • /
    • 2001
  • This paper discusses the system design of a synthetic aperture radar system based on a pulse-echo radar. The design consists of an ultra-wide bandwidth antenna, an amplitude modulation, timing stabilities, and high speed a/d conversions with an equivalent-time sampling. Experiment results show that GPR(Ground Penetrating Radar) can be used to explore buried electric facilities.

  • PDF

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.

Delay Dependent Fuzzy H Control of Radar Gimbal Stabilization System with Parameter Uncertainty and Time Delay (파라미터 불확실성 및 시간지연을 갖는 레이더 김벌 안정화 시스템의 지연종속 퍼지 H 제에)

  • Kim, Tae-Sik;Lee, Hae-Chang;Lee, Kap-Rai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.920-929
    • /
    • 2005
  • This paper presents controller design method for nonlinear radar gimbal system with parameter uncertainty and time delay. In order to consider nonlinearity of gimbal bearing frictional torque, we firstly represent fuzzy model for the nonlinear gimbal system, which is achieved by fuzzy combination of linear models through nonlinear fuzzy membership functions. And secondly we propose a delay dependent fuzzy $H_\infty$ controller design method for the delayed fuzzy model with parameter uncertainty and design radar gimbal controller. The designed controller stabilize gimbal system and guarantee $H_\infty$ performance. A computer simulation is given to illustrate stabilized control performances of the designed controller.

Airborne Pulsed Doppler Radar Development (비행체 탑재 펄스 도플러 레이다 시험모델 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Bae, Jae-Hoon;Jeon, In-Pyung;Yang, Ju-Yoel
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system of the aircraft to perform various missions in all weather environments. This paper presents the design, development, and test results of the multi-mode pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRU units, which include ANTU(Antenna Unit), TRU(Tx Rx Unit), RSDU(Radar Signal & Data Processing Unit) and DISU(Display Unit). The developed technologies include the TACCAR processor, planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, DSP based Doppler FFT filtering, adaptive CFAR, IMU, and tracking capability. The design performance of the developed radar system is verified through various helicopter-borne field tests including MTD (Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

  • PDF

Design of Passive-Type Radar Reflector

  • Yim, Jeong-Bin;Kim, Woo-Suk
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.267-272
    • /
    • 2003
  • This paper describes design method of Passive-type Radar Reflector (PRR) which is to provide the requirement of newly revised 2000 SOLAS regulations on the Radar Reflector. The main target of this work is to find the optimum shape of a radar target having large Radar Cross Section (RCS). Through the RCS analysis based on the theoretical approach, two kinds of PRR models, RRR-F model for use in fisheries and PRR-S model for use in small sized ship, are designed and discussed their RCS performance. RCS measurement tests for the various sized samples are carried out in an anechoic chamber. As evaluation results it was clearly shown that the conventional sphere-type shows optimum shape in case of PRR-S, while the cylinder-type which consists of large sized corner clusters or zig-zag flat plats gives best performance in case of PRR-F.

Design and implementation of signal processing system for airborne active homing radar

  • Lee, Young-Sung;Kim, Doh-Hyun;Kim, Lee-Han;Kim, Young-Chae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.158.2-158
    • /
    • 2001
  • This paper introduces the design and implementation of a signal processing system for an airborne active homing radar system. This airborne active homing radar system uses the pulse Doppler radar of high PRF (Pulse Repetition Frequency) for computation of exact relative velocity of the target. This system carries out two operations mainly. The first is to transmit and receive microwave signal through the antenna. The second is to calculate the relative velocity of the target taking advantage of the Doppler frequency signal reflected from the target and detect the angle error between a target and an antenna LOS (Line Of Sight) to make the antenna direction coincident with the target. The signal processing system has a role of the latter.

  • PDF

A Study on Efficient Design of Surveillance RADAR Interface Control Unit in Naval Combat System

  • Dong-Kwan Kim;Dong-Han Jung;Won-Seok Jang;Young-San Kim;Hyo-Jo Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.125-134
    • /
    • 2023
  • In this paper, we propose an efficient surveillance RADAR(RAdio Detection And Ranging) interface control unit(ICU) design in the naval combat system. The proposed design applied a standardized architecture for modules that can be shared in ship combat system software. An error detection function for each link was implemented to increase the recognition speed of disconnection. Messages that used to be sent periodically for human-computer interaction(HCI) are now only transmitted when there is a change in the datagram. This can reduce the processing load of the console. The proposed design supplements the radar with the waterfall scope and time-limited splash recognition in relation to the hit check and zeroing of the shot when the radar processing ability is low due to the adoption of a low-cost commercial radar in the ship. Therefore, it is easy for the operator to determine whether the shot is hit or not, the probability of wrong recognition can be reduced, and the radar's resources can be obtained more effectively.