• 제목/요약/키워드: Radar Signal Generator

Search Result 45, Processing Time 0.025 seconds

Radar Countermeasure and Effect Analysis for the Pull-Off Deceptive Jamming Signal (Pull-Off 기만 재밍 신호에 대한 레이다 대응기법 및 효과 분석)

  • Jang, Sunghoon;Kim, Seonjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.221-228
    • /
    • 2020
  • This paper presents the radar counter jamming algorithm and ground far-field test results for the pull-off deceptive jamming signals like RGPO(Range Gate Pull Off) and VGPO(Velocity Gate Pull Off). We designed the radar counter jamming algorithm according to the characteristics of the deceptive jamming signals. This algorithm is validated by simulation before ground far-field test. The existing X-band AESA radar demonstrator was used to test the proposed algorithm. The proposed algorithm was applied to the radar processor software. The deceptive jamming signals generated using the commercial jamming signal generator. We performed the repeated ground far-field test with the test scenario. Test results show that the proposed counter deceptive jamming algorithm works in the real radar system.

Design of the Single Chip Trigonometric Function Generator with ROMs (ROM을 이용한 SINGLE CHIP SINE FUNCTION GENERATOR의 설계)

  • Hong, Ki-Sang;Hwang, Ho-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1485-1487
    • /
    • 1987
  • To improve time delay produced in computation of trigonometric function by software method, the function generator was designed to compute the sine function with ROMs. Since the computation speed of trigonometric function can be improved by this ROM, it will be used in various parts required to scientific calculation-radar, FFT and signal processing etc.

  • PDF

Wideband Chirp Waveform Simulation and Performance Analysis for High Range Resolution Radar Imaging (고해상도 영상 레이다의 광대역 첩 신호 파형 발생 시뮬레이션과 성능 분석)

  • Kwag, Young Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.97-103
    • /
    • 2002
  • A recent technology trends in synthetic aperture radar(SAR) requires the ultra high resolution performance in detecting and precisely identifying the targets. In this paper, as a technique for enhancing the radar range resolution, the wide band chirp connection algorithm is presented by stitching the several chirp modules with unit bandwidth based on the linear frequency modulated chirp signal waveform. The principles of the digital chirp signal generation and its architecture for implementation is described with the wide band chirp signal generator, modulator, and demodulator. The performance analysis for the presented algorithm is given with the simulation results.

  • PDF

Wideband Chirp Waveform Design for High Range Resolution Radar Imaging (고해상도 영상 레이다의 광대역 첩 신호 파형 설계)

  • 곽영길;조호신
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • A recent technology trends in synthetic aperture radar(SAR) requires the ultra high resolution performance in detecting and precisely identifying the targets. In this paper, as a technique for enhancing the radar range resolution, the wideband chirp connection algorithm is presented by stitching the several chirp modules with unit bandwidth based on the linear frequency modulated chirp signal waveform. The principles of the digital chirp signal generation and its architecture for implementation is briefly described, and the wideband chirp signal generator, modulator, and demodulator are designed. The performance analysis for the presented algorithm is given with the simulation results.

Development of Millimeter wave Radar System for an Automobile (차량용 밀리파 레이더 시스템의 개발)

  • 박홍민;이규한;최진우;신천우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.25-28
    • /
    • 2001
  • This paper introduce a millimeter-wave radar system. As Fig 1 shows, This system consists of millimeter-wave radar front-end and digital signal processing parts through receive waves regarding up-coming obstacles. The system works as follow process; (1) Generate regular tripodal waves using the FMCW pulse generator (2) Transmit/Receive waves regarding up-coming obstacles (3) Analog filtering (4) FIFO memory interface (5) FFT(Fast Fourier Transform) (6) Calculation of distance / speed between cars (7) Object display and calibration. We have progress to solve the problem like as increase of traffic accidents causing damage and injuries due to the increased number of motor vehicles and long distance driving, and Need for a device to help drivers who are in trouble due to bad weather conditions. We are expect to Take the lead as a core technology in the ITS industry and to develop circuit and signal processing technologies related to millimeter-wave bandwidth.

  • PDF

Repeated K-means Clustering Algorithm For Radar Sorting (레이더 군집화를 위한 반복 K-means 클러스터링 알고리즘)

  • Dong Hyun ParK;Dong-ho Seo;Jee-hyeon Baek;Won-jin Lee;Dong Eui Chang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.384-391
    • /
    • 2023
  • In modern electronic warfare, a number of radar emitters are in operation, causing radar receivers to receive high-density signal pulses that occur simultaneously. To analyze the radar signals more accurately and identify enemies, the sorting process of high-density radar signals is very important before analysis. Recently, machine learning algorithms, specifically K-means clustering, are the subject of research aimed at improving the accuracy of radar signal sorting. One of the challenges faced by these studies is that the clustering results can vary depending on how the initial points are selected and how many clusters number are set. This paper introduces a repeated K-means clustering algorithm that aims to accurately cluster all data by identifying and addressing false clusters in the radar sorting problem. To verify the performance of the proposed algorithm, experiments are conducted by applying it to simulated signals that are generated by a signal generator.

Implementation of the COHO Unit for Phase-locking of Radar (레이다 위상동기를 위한 COHO Unit의 구현)

  • Cho, Tae-Bok;Shin, Hye-Jin;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • For the phase measurement of radar signal in the coherent-on-receiver system, the COHO(Coherent Oscillator) generates the signal which locks to the phase of the transmit pulse. In this paper, COHO unit is developed to generate 60 MHz phase-locked signal. ILO(Injection Locking Oscilator) locks to the sample of the transmit pulse. Gate circuit, ILO, buffer amplifier, and pulse generator are designed and implemented.

  • PDF

Modelling and Simulation of Glint and RCS of Complex Target (복잡한 목표물의 Glint와 RCS 모델링 및 시뮬레이션)

  • Song, Seungeon;Shin, Han-Seop;Kim, Dae-Oh;Kang, Chul-Ung;Ko, Seokjun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • The signal transmitted from radar is not reflected from a single point when the signal reflected by complex target. Resultantly, the amplitude and phase of the received signal can be changed because the target has lots of scatterers. The changes of the amplitude and the phase mean Glint and RCS, respectively. Although the Glint and RCS that caused by the same scatters are uncorrelated, however, they are not independent completely. Therefore, this paper proposes a method for generating the Glint and RCS by using same random number generator. And the time correlations of the Glint and RCS are respectively implemented in frequency domain by using each power spectral density of them.

Design and Performance Analysis of UWB Modules for Borehole Radar System (시추공 레이더 시스템에 사용되는 UWB 모듈의 설계 및 성능 분석)

  • Cho, Jae-Hyoung;Kim, Sang-Wook;Kim, Se-Yun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1121-1129
    • /
    • 2009
  • In this paper, the UWB(Ultra-Wide Band) modules such as a pulse generator and the LNA(Low-Noise Amplifier) with AGC(Auto Gain Control) are designed to construct a cross-borehole pulse radar system, of which performance is compared with the existing system. The budget and specification of the radar system are determined by calculating the total path loss of the underground medium including an empty cavity. The pulse generator is fabricated to have the repeatation frequency 40 kHz, the pulse width lower than 5 ns and the peak signal level +73 dBm. The UWB LNA is designed to have the noise figure 3.77 dB, the variable gain range 100 dB and the frequency range of 20 MHz to 200 MHz. Compared with the existing system in an actual test site, the implemented system renders it possible to detect the blind area due to the UWB LNA with low noise figure.

Development of Raman Laser Radar System for Aerosol and Water Vapor Measurements (에어로졸, 수증기 측정 라만 레이저 레이다 시스템 개발)

  • Park, Chan-Bong;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.158-161
    • /
    • 2012
  • Raman Laser Radar system for the measurements of aerosol and water vapor concentration is developed. As a transmitting system, Nd:YAG laser with 3rd harmonic Generator and beam expander are used. The wavelength of transmitting laser is 355 nm. The receiving system is consists of 500 mm telescope, 3-channel Raman spectrometer, PMT, and signal processing module. The wavelengths of received signals are 355 nm. 387 nm, and 408 nm 이다. The measurable altitude of this system is about 3~4 km with spatial resolution of 100~200 m.

  • PDF