• Title/Summary/Keyword: Radar Rainfall

Search Result 347, Processing Time 0.049 seconds

Distributed GIS-Based Watershed Rainfall-Runoff Model Development and Its Calibration using Weather Radar (기상레이더와 지형정보시스템을 이용한 분포형 강우-유출 유역모형의 개발과 검정)

  • Skahill, Brian E.;Choi, Woo-Hee;Kim, Min-Hwan;Kim, Sung-Kyun;Johnson, Lynn E.
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.285-300
    • /
    • 2003
  • An event-based, kinematic, infiltration-excess, and distributed rainfall-runoff model using weather radar and Geographic Information System(GIS) was developed to acknowledge and account lot the spatial variability and uncertainty of several parameters relevant to storm surface runoff and surface flow The developed model is compatible with raster GIS and spatially and temporally varied rainfall data. To calibrate the model, Monte Carlo simulation and a likelihood measure are utilized; allowing for a range of possible system responses from the calibrated model. Using rain gauge adjusted radar-rainfall estimates, the developed model was applied and evaluated to a limited number of historical events for the Ralston Creek and Goldsmith Gulch basins within the Denver Urban Drainage and Flood Control District (UDFCD) that contain mixed land use classifications. While based on a limited number of Monte Carlo simulations and considered flood events, Nash and Sutcliffe efficiency score ranges of -0.19∼0.95 / -0.75∼0.81 were obtained from the calibrated models for the Ralston Creek and Goldsmith Gulch basins, based on a comparison of observed and simulated hydrographs. For the Ralston Creek and Goldsmith Gulch basins, Nash and Sutcliffe efficiency scores of 0.88/0.10, 0.14/0.71, and 0.99/0.95 for runoff volume, peak discharge, and time to peak, respectively, were obtained from the model.

Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer (정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로)

  • Shin, Yeji;Han, Daehyeon;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1405-1423
    • /
    • 2021
  • Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellite-based quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 ㎛), infrared channel (10.8 ㎛), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the Z-R relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.

Rainfall Intensity Estimation with Cloud Type using Satellite Data

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.660-663
    • /
    • 2006
  • Rainfall estimation is important to weather forecast, flood control, hydrological plan. The empirical and statistical methods by measured data(surface rain gauge, rainfall radar, Satellite) is commonly used for rainfall estimation. In this study, the rainfall intensity for East Asia region was estimated using the empirical relationship between SSM/I data of DMSP satellite and brightness temperature of GEOS-9(10.7${\mu}m$) with cloud types(ISCCP and MSG classification). And the empirical formula for rainfall estimation was produced by PMM (Probability Matching Method).

  • PDF

Hierarchical Compression Technique for Reflectivity Data of Weather Radar (기상레이더 반사도 자료의 계층적 압축 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lim, Sanghun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.793-805
    • /
    • 2015
  • Nowadays the amount of data obtained from advanced weather radars is growing to provide higher spatio-temporal resolution. Accordingly radar data compression is important to use limited network bandwidth and storage effectively. In this paper, we proposed a hierarchical compression method for weather radar data having high spatio-temporal resolution. The method is applied to radar reflectivity and evaluated in aspects of accuracy of quantitative rainfall intensity. The technique provides three compression levels from only 1 compressed stream for three radar user groups-signal processor, quality controller, weather analyst. Experimental results show that the method has maximum 13% and minimum 33% of compression rates, and outperforms 25% higher than general compression technique such as gzip.

Development and Evaluation of a Real Time Runoff Modelling System using Weather Radar and Distributed Model (기상레이더와 분포형 모형을 이용한 실시간 유출해석 시스템 개발 및 평가)

  • Choi, Yun Seok;Kim, Kyung Tak;Kim, Joo Hun
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.385-397
    • /
    • 2012
  • A grid based physically distributed model analyzes rainfall-runoff using physical parameters and grid-typed spatial and hydrological data. This study have developed a real time runoff modelling system using GRM RT(Grid based Rainfall-runoff Model Real Time) which is a real time flow analysis module in GRM, a grid based physically distributed rainfall-runoff model. Weather radar data received in real time are calibrated by using real time AWS from Korea Meteorological Administration(KMA), and they are applied to real time runoff modeling. And the runoff model is calibrated by using observed discharges from a water level gauge in real time. This study have designed and implemented the databases necessary to construct the real time runoff modelling system, and established the process of a real time runoff modelling. And the performances of the developed system have been evaluated. The system have been applied to Nerinheon watershed located in the upstream of Soyanggang Dam and the application results are evaluated.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

The Characteristics of Heavy Rainfall in Summer over the Korean Peninsula from Precipitation Radar of TRMM Satellite : Case Study (TRMM/PR 관측에 의한 한반도에서의 여름철 호우의 특성 : 사례연구)

  • 박혜숙;정효상;노유정
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • The Tropical Rainfall Measuring Mission(TRMM) Satellite was launched in November 1997, carving into orbit the first space-borne Precipitation Radar(PR). The main objective of the TRMM is to obtain and study multi-year science data sets of tropical and subtropical rainfall measurements. In the present investigation, the characteristics of heavy rainfall cases over Korea in 1998 and 1999 are analyzed using the TRMM/PR dat3. We compare the rainrate measured from TRMM/PR with the accumulated rainfall data for 10 minutes tv Automatic Weather System(AWS). Especially, horizontal cross-section of rainrate with height and longitude in the precipitating clouds are investigated. As a result of the comparison with GMS-5 IR1, the TRMM/PR data delineate well the rain type( i.e. convective, stratiform cloud and others), height of storm top and instantaneous rainrate in the precipitating clouds. The vertical structure with height and horizontal cross-section of rainrate along the longitude show the orographic effect on the rainfall. TRMM/PR instrument measures the rainrate below 6 ㎜/hr more than AWS rainguages and inclined to underestimate the rainrate than rainguages for the whole area.

LOW RESOLUTION RAINFALL ESTIMATIONS FROM PASSIVE MICROWAVE RADIOMETERS

  • Shin, Dong-Bin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.378-381
    • /
    • 2007
  • Analyses of Tropical Rainfall Measuring Mission (TRMM) microwave radiometer (TMI) and precipitation radar (PR) data show that the rainfall inhomogeneity, represented by the coefficient of variation, decreases as rain rate increases at the low resolution (the footprint size of TMI 10 GHz channel). The rainfall inhomogeneity, however, is relatively constant for all rain rates at the high resolution (the footprint size of TMI 37 GHz channel). Consequently, radiometric signatures at lower spatial resolutions are characterized by larger dynamic range and smaller variability than those at higher spatial resolution. Based on the observed characteristics, this study develops a low-resolution (${\sim}40{\times}40$ km) rainfall retrieval algorithm utilizing realistic rainfall distributions in the a-priori databases. The purpose of the low-resolution rainfall algorithm is to make more reliable climatological rainfalls from various microwave sensors, including low-resolution radiometers.

  • PDF