• 제목/요약/키워드: Radar Performance

검색결과 988건 처리시간 0.028초

A Simulator for Radar Performance Evaluation in a Far-Field Test Range (원방계 조건하에서의 레이다 성능평가를 위한 시뮬레이터)

  • Kil, Min-Young;Myung, Noh-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.33-38
    • /
    • 2005
  • In this paper, a simulator for radar performance evaluation in a far-field test range is proposed, which can forecast maximum detection range, minimum detection range, number of test trials, resolution (range, azimuth, elevation) with input parameters before radar performance test and process results after. The proposed simulator is designed by Microsoft Foundation Class (MFC) of VC++ 6.0.

  • PDF

Estimation of Detection Performance for Vehicle FMCW Radars Using EM Simulations

  • Yoo, Sungjun;Kim, Hanjoong;Byun, Gangil;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • 제19권1호
    • /
    • pp.13-19
    • /
    • 2019
  • This paper proposes a systematic method for estimating detection performances of a frequency-modulated continuous wave radar using electromagnetic simulations. The proposed systematic method includes a radar system simulator that can obtain range-Doppler images using the electromagnetic (EM) simulations in conjunction with a test setup employed for performance evaluation of multiple targets at different velocities in a traffic environment. This method is then applied for optimizing the half-power beamwidths of the antenna array using an evaluation metric defined to improve the detection strengths for the multiple targets. The optimized antenna has vertical and horizontal half-power beam widths of $10^{\circ}$ and $60^{\circ}$, respectively. The results confirm that that the proposed systematic method is suitable to improve the radar detection performance with the enhanced radar-Doppler images.

Development of Virtual Target Signal Generator for Verifying the Shipborne Tracking Radar Performance (함정용 추적레이더 성능 검증을 위한 모의표적신호발생장치 개발)

  • Yi, Hui-Min;Son, Jae-Hyun;Na, Young-Jin;Kim, Dong-Hawn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제15권1호
    • /
    • pp.66-74
    • /
    • 2012
  • The virtual target signal generator was developed to verify the shipborne tracking radar performance. It was used to DRFM(Digital RF Memory) method to generate the virtual moving targets. The target signal includes Doppler shift and RCS according to the target motion. And the signal generator can make jamming signal and clutter to test shipborne radar performance at real environmental condition. This paper described the functional diagram and the hardware configuration items to meet the test requirements for the tracking radar. And it showed the critical design points for the sub-systems. The signal generator which was developed in this paper shared the operational information of the radar with the radar command and control part. To test the frequency agility of the radar, it had the local oscillator which could do high speed frequency switching according to radar information. By communicating between the signal generator and the radar command and control part, the local oscillator of signal generator could be controlled every pulse. It reduced the instantaneous bandwidth of signal generator and minimized the spurious. So it lowered the probability of generating wrong targets.

Performance of Amplitude Comparison Monopulse Radar (진폭비교 모노펄스 레이다의 성능)

  • An, Do-Jin;Lee, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제29권12호
    • /
    • pp.969-975
    • /
    • 2018
  • The main function of the tracking radar is to automatically track the target. The amplitude-comparison monopulse radar utilizes a monopulse radar to estimate the angular components of a target. In this paper, the operating performance of the amplitude-comparison monopulse radar is quantitatively analyzed via the MSEs, with considerations on additive noise. The performance of the amplitude comparison monopulse radar can be predicted by comparing it with an approximated estimate.

Detection Performance of Noncoherent Radar: MIMO Radar, Phased Array Radar, Directional MIMO Radar (비동기식 레이더의 검출 성능 비교: MIMO 레이더, 위상 배열 레이더, 지향성 MIMO 레이더)

  • An, Chan-Ho;Yang, Jang-Hoon;Pak, Ui-Young;Ryu, Young-Jae;Han, Duk-Chan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제36권12B호
    • /
    • pp.1752-1757
    • /
    • 2011
  • In a traditional phased array radar, closely spaced antenna elements transmit a scaled version of single waveform to maximize the signal energy. On the contrary, a multiple-input multiple-output (MIMO) radar consists of widely separated antennas and transmits an arbitrary waveform from each antenna element. These waveforms and spatial diversity enable superior capabilities compared with phased array radar. At high signal-to-noise ratio (SNR), the detection performance of the MIMO radar is better than the phased array radar due to the diversity gains. However, the phased array radar outperforms the MIMO radar at low SNR, due to the energy maximization. In this paper, we investigate the compromised scheme between the MIMO radar and the phased array radar. Employing the MIMO radar equipped with phased array elements, the compromised scheme achieves both array gain and diversity gain. Also, we compare the performance degradation when the steering direction is incorrect.

Using Hierarchical Performance Modeling to Determine Bottleneck in Pattern Recognition in a Radar System

  • Alsheikhy, Ahmed;Almutiry, Muhannad
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.292-302
    • /
    • 2022
  • The radar tomographic imaging is based on the Radar Cross-Section "RCS" of the materials of a shape under examination and investigation. The RCS varies as the conductivity and permittivity of a target, where the target has a different material profile than other background objects in a scene. In this research paper, we use Hierarchical Performance Modeling "HPM" and a framework developed earlier to determine/spot bottleneck(s) for pattern recognition of materials using a combination of the Single Layer Perceptron (SLP) technique and tomographic images in radar systems. HPM provides mathematical equations which create Objective Functions "OFs" to find an average performance metric such as throughput or response time. Herein, response time is used as the performance metric and during the estimation of it, bottlenecks are found with the help of OFs. The obtained results indicate that processing images consumes around 90% of the execution time.

A Performance Analysis of Virtualization using Docker for Radar Signal Processing

  • Ji, Jong-Hoon;Moon, Hyun-Wook;Sohn, Sung-Hwan;Hong, Sung-Min;Kwon, Se-Woong;Kang, Yeon-Duk
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.114-122
    • /
    • 2020
  • When replacing hardware due to obsolescence, discontinuation, and expansion of software-equipped electronic equipment, software changes are required in the past, but if virtualization technology is applied, it can be applied without software changes. In this regard, we studied in order to apply virtualization technology in the development of naval multi-function radar signal processing, we studied hardware and OS independency for Docker and performance comparison between Docker and virtual machine. As a result, it was confirmed that hardware and OS independence exist when using Docker and that high-speed processing is possible compared to the virtual machine.

Development of Radar HILS System and Verification Radar Performance Scenario-based (레이다 비행 모의 장치 개발 및 시험 시나리오 기반 레이다 성능 검증)

  • Yong-kil Kwak
    • Journal of Advanced Navigation Technology
    • /
    • 제27권5호
    • /
    • pp.574-579
    • /
    • 2023
  • The radar flight test has many restrictions on simulating various targets, clutter and jamming signal. Therefore, in this study, a radar HILS system that performs a radar operation simulation function according to an operation scenario was developed. Radar HILS simulates the radar mission environment through radar beam operation simulation, radar operation control, simulated signal generation, and flight attitude simulation.. HILS generates and modulates simulated target signals(single, multiple targets) containing radar mission environments(clutter, jamming etc.) based on flight scenarios, and transmits them to AESA radar over RF. And Scenario-based radar performance was verified by detecting simulated targets and confirming detection results.

Performance Analysis of Sensor Systems for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Jo, Jung Hyun;Park, Jang-Hyun;Chung, Taejin;Park, Jaewoo;Jeon, Hocheol;Yun, Ami;Lee, Yonghui
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.303-314
    • /
    • 2017
  • With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a $1-m^2$ radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.

Study on Effects of Separation Distance between Flat Cover and Radar for 24 GHz Band Radar (24 GHz 대역 레이더의 평면 커버와 레이더 간의 이격 거리의 영향에 관한 연구)

  • Junho Yeo;Jonghwan Lee;Jeong Tak Ryu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제29권2호
    • /
    • pp.27-33
    • /
    • 2024
  • In this paper, the effects of separation distance from a thick radar cover on the performance of 24 GHz band radar was studied through experiments. When a polycarbonate radar cover with a thickness of 10 mm was placed in front of the radar, the variations in radar performance according to the change in the separation distance between the radar and the radar cover was compared with the case without the radar cover. As a radar performance indicator, the distance measured from the radar was used, and the distance was measured using the radar when a person moves away from the radar at a constant speed in the hallway of the building and then approaches again. The separation distance between the radar and radar cover was tested at 2 mm, 5 mm, and 20 mm, respectively. When there was no radar cover, the distance could be measured up to 49.64 m and the error was the lowest. When the separation distance was 2 mm, there was a section where distance measurement was not possible starting from 37.61 m, so the performance was the worst. When the separation distance was increased to 5 mm and 20 mm, the distance was measured up to 49.56 m, but the section where the error between the measured distance and the expected distance was large occurred more often than when there was no radar cover.