• Title/Summary/Keyword: Radar Performance

Search Result 988, Processing Time 0.027 seconds

Time Synchronization Using Mutual Interference in Two FMCW Radars (두 대의 FMCW 레이다에서 레이다간 상호 간섭 신호를 이용한 시간동기화 방법)

  • Cho, Byung-Lae;Lee, Jung-Soo;Lee, Jong-Min;Sun, Sun-Gu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1323-1326
    • /
    • 2012
  • In military applications, many radar systems are simultaneously operated at a close range. In particular, the frequency allocation must be executed for operating the homogeneous radar systems at the same time. As many radar systems are simultaneously operated with overlapping frequency bands, interference between systems inevitably occurs. Because interference can degrade radar performance, suppression of interference is a critical issue in radar systems. In this letter, we analyze the interference between two FMCW radars. In addition, time synchronization method between radars using mutual interference is proposed. Experiments are carried out to validate the proposed method. The results demonstrate that the proposed method is suitable for real radar systems.

Development of Multi-Band Multi-Mode SDR Radar Platform (다중 대역 다중 모드 SDR 레이다 플랫폼 개발)

  • Kwag, Young-Kil;Woo, In-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.949-958
    • /
    • 2016
  • This paper presents the new development result of the multi-band, the multi-mode SDR(Software Defined Radar) platform. The SDR hardware platform is implemented by using the reconfigurable multi-band RF transceiver and antenna modules of S, X, and K-bands, and a programmable signal processing module. The SDR software platform is implemented by using the multi-mode waveform generation of CW, Pulse, FMCW, and LFM Chirp as well as the adaptable algorithm library of signal processing and open API software modules. Through the integrated test of the SDR platform, the operational performance was verified in real-time. Also, through the field-application test, the ground target and air-vehicle drone target were successfully detected and their test results were presented.

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.

Ship Monitoring around the Ieodo Ocean Research Station Using FMCW Radar and AIS: November 23-30, 2013

  • Kim, Tae-Ho;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2022
  • The Ieodo Ocean Research Station (IORS) lies between the exclusive economic zone (EEZ) boundaries of Korea, Japan, and China. The geographical positioning of the IORS makes it ideal for monitoring ships in the area. In this study, we introduce ship monitoring results by Automatic Identification System (AIS) and the Broadband 3GTM radar, which has been developed for use in small ships using the Frequency Modulated Continuous Wave (FMCW) technique. AIS and FMCW radar data were collected at IORS from November 23th to 30th, 2013. The acquired FMCW radar data was converted to 2-D binary image format over pre-processing, including the internal and external noise filtering. The ship positions detected by FMCW radar images were passed into a tracking algorithm. We then compared the detection and tracking results from FMCW radar with AIS information and found that they were relatively well matched. Tracking performance is especially good when ships are across from each other. The results also show good monitoring capability for small fishing ships, even those not equipped with AIS or with a dysfunctional AIS.

Evaluation of Structural Integrity and Performance Using Nondestructive Testing and Monitoring Techniques

  • Rhim, Hong-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.

  • PDF

Performance Comparison for Radar Target Classification of Monostatic RCS and Bistatic RCS (모노스태틱 RCS와 바이스태틱 RCS의 표적 구분 성능 분석)

  • Lee, Sung-Jun;Choi, In-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1460-1466
    • /
    • 2010
  • In this paper, we analyzed the performance of radar target classification using the monostatic and bistatic radar cross section(RCS) for four different wire targets. Short time Fourier transform(STFT) and continuous wavelet transform (CWT) were used for feature extraction from the monostatic RCS and the bistatic RCS of each target, and a multi-layered perceptron(MLP) neural network was used as a classifier. Results show that CWT yields better performance than STFT for both the monostatic RCS and the bistatic RCS. And, when STFT was used, the performance of the bistatic RCS was slightly better than that of the monostatic RCS. However, when CWT was used, the performance of the monostatic RCS was slightly better than that of the bistatic RCS. Resultingly, it is proven that bistatic RCS is a good cadndidate for application to radar target classification in combination with a monostatic RCS.

A Compensation Scheme of Frequency Selective IQ Mismatch for Radar Systems (레이더 시스템을 위한 주파수 선택적 IQ 불일치 보상 기법)

  • Ryu, Yeongbin;Heo, Je;Son, Jaehyun;Choi, Mungak;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.565-571
    • /
    • 2021
  • In this paper, a compensation scheme of frequency selective IQ mismatch for high-performance radar systems based on commercial RFIC's is proposed. Besides, an optimization model and its solution based on the dimension reduction scheme using singular value decomposition are also proposed to design the optimal IQ mismatch compensation digital filter with complex coefficients. The performance of the proposed method had been analyzed through experiments using the IQ mismatch measurement and compensation system implemented on an FPGA board with a target RFIC and compared with the previous method. The experiment result showed a performance improvement of the proposed method over the existing one without noticeable increments in complexities. These performance analysis results showed that the limitation of using commercial RFIC's in high-performance radar systems due to the undesirable maximum SNR cap caused by their IQ mismatches could be overcome by employing the proposed method.

Radar Return Signal Simulation Equipment Using MC-DDS (Multi-Channel Direct Digital Synthesis) (다채널 직접 디지털 합성을 이용한 레이더 반사 신호 모의 장치)

  • Roh, Ji-Eun;Yang, Jin-Mo;Yoo, Gyung-Joo;Gu, Young-Suk;Lee, Sang-Hwa;Song, Sung-Chan;Lee, Hee-Young;Choi, Byung-Gwan;Lee, Min-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.966-980
    • /
    • 2011
  • Radar receiving echo signal provides target information - range, velocity and position by signal magnitude and Doppler shift, which are determined by target reflection characteristics and target maneuver. Target angle error is extracted from the magnitude ratio of difference channel to sum channel. In this paper, we introduce a radar Return Signal Simulation Equipment(RSSE) which is implemented for the purpose of performance analysis and evaluation of phased array multi-function radar(MFR). It generates multi-target environment with jamming signals using MC-DDS (Multi-Channel Direct Digital Synthesis), and has scalability by using the efficient hardware configuration. The performance of the developed RSSE has been evaluated under various test environments. Especially, we proved that required target detection performance is achieved by RSP(Radar Signal Processor) interfaced RSSE configuration.

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.

Performance Improvement of Maneuvering Target Tracking with Radar Measurement Noise Estimation (레이더 측정 잡음 추정을 통한 기동 표적 추적 성능 향상)

  • Jeon, Dae-Keun;Eun, Yeon-Ju;Ko, Hyun;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • Measurement noise variance of the radar is one of the main inputs of a state estimator of surveillance data processing system for air traffic control and has influences on the accuracy performance of maneuvering target tracking. A method is presented of estimating measurement noise variances every frame of target tracking using likelihood functions of multiple IMM filter. The results by running of Monte Carlo simulation show that variances are estimated within 5% of errors compared with true values and the tracking accuracy performance is improved.