• Title/Summary/Keyword: Radar Data

Search Result 1,419, Processing Time 0.025 seconds

An Automotive Radar Target Tracking System Design using ${\alpha}{\beta}$ Filter and NNPDA Algorithm (${\alpha}{\beta}$ 필터 및 NNPDA 알고리즘을 이용한 차량용 레이더 표적 추적 시스템 설계)

  • Bae, JunHyung;Hyun, EuGin;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Automotive Radar Systems are currently under development for various applications to increase accuracy and reliability. The target tracking is most important in single or multiple target environments for accuracy. The tracking algorithm provides smoothed and predicted data for target position and velocity(Doppler). To this end, the fixed gain filter(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter) and dynamic filter(Kalman filter, Singer-Kalman filter, etc) are commonly used. Gating is used to decide whether an observation is assigned to an existing track or new track. Gating algorithms are normally based on computing a statistical error distance between an observation and prediction. The data association takes the observation-to-track pairings that satisfied gating and determines which observation-to-track assignment will actually be made. For data association, NNPDA(Nearest Neighbor Probabilistic Data Association) algorithm is proposed. In this paper, we designed a target tracking system developed for an Automotive Radar System. We show the experimental results of the 77GHz FMCW radar sensor on the roads. Four tracking algorithms(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter, 2nd order Kalman filter, Singer-Kalman filter) have been compared and analyzed to evaluate the performance in test scenario.

WAVENUMBER CORRELATION ANALYSIS OF RADAR INTERFEROGRAM

  • Won, Joong-Sun;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.425-428
    • /
    • 1999
  • The radar interferogram represents phase differences between the two synthetic aperture radar observations acquired in slightly different angle. The success of the radar interferometric application largely depends on the quality of the interferogram generated from two or more synthetic aperture radar data sets. We propose here to apply the wavenumber correlation analysis to the in-phase and quadrature phase of the radar interferogram. The wavenumber correlation analysis is to resolve the highly correlated components from the low correlation components by estimating correlation coefficients for each wavenumber component. Through this approach, one can easily distinguish the signal components from the noise components in the wavenumber domain. Therefore, the wavenumber correlation analysis of the radar interferogram can be utilized to design post filter and to estimate the quality of interferogram. We have tested the wavenumber correlation analysis using a Radarsat SAR data pair to demonstrated the effectiveness of

  • PDF

Design of Echo Classifier Based on Neuro-Fuzzy Algorithm Using Meteorological Radar Data (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 에코 분류기 설계)

  • Oh, Sung-Kwun;Ko, Jun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.676-682
    • /
    • 2014
  • In this paper, precipitation echo(PRE) and non-precipitaion echo(N-PRE)(including ground echo and clear echo) through weather radar data are identified with the aid of neuro-fuzzy algorithm. The accuracy of the radar information is lowered because meteorological radar data is mixed with the PRE and N-PRE. So this problem is resolved by using RBFNN and judgement module. Structure expression of weather radar data are analyzed in order to classify PRE and N-PRE. Input variables such as Standard deviation of reflectivity(SDZ), Vertical gradient of reflectivity(VGZ), Spin change(SPN), Frequency(FR), cumulation reflectivity during 1 hour(1hDZ), and cumulation reflectivity during 2 hour(2hDZ) are made by using weather radar data and then each characteristic of input variable is analyzed. Input data is built up from the selected input variables among these input variables, which have a critical effect on the classification between PRE and N-PRE. Echo judgment module is developed to do echo classification between PRE and N-PRE by using testing dataset. Polynomial-based radial basis function neural networks(RBFNNs) are used as neuro-fuzzy algorithm, and the proposed neuro-fuzzy echo pattern classifier is designed by combining RBFNN with echo judgement module. Finally, the results of the proposed classifier are compared with both CZ and DZ, as well as QC data, and analyzed from the view point of output performance.

A Study on the Simplex and Distributed Multiplex type System for the Radar Data Processing (레이다 정보처리를 위한 단일형 및 분산다중형 시스템에 관한 연구)

  • 김춘길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1785-1796
    • /
    • 1993
  • Thanks to the data processing facilities of modern digital computers, the performances of radar has been promoted greatly as one of the main components of command and control systems along with the computer communications. In this study, radar data integrating and processing systems were designed for the data processing of various information from many kinds of radar in a single data processing system. The performance of the data integrating system was analyzed by applying queueing theory. A radar data integrating network was designed for synchronous relational operations among the information processing systems and the transmission characteristics were also analysed by specific models for each system. The designed data integrating systems can be divided into a simplex type and a distributed multiplex type.

  • PDF

Numerical Study on the Sensitivity of Meteorological Field Variation due to Radar Data Assimilation (레이더 자료동화에 따른 기상장모의 민감도에 관한 수치연구)

  • Lee Soon-Hwan;Park Geun-Yeong;Ryu Chan-Su
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.9-19
    • /
    • 2006
  • The purpose of this research is development of radar data assimilation observed at Jindo S-band radar The accurate observational data assimilation system is one of the important factors to meteorological numerical prediction of the region scale. Diagnostic analysis system LAPS(Local Analysis and Prediction System) developed by US FSL(Forecast Systems Laboratory) is adopted assimilation system of the Honam district forecasting system. The LAPS system was adjusted in calculation environment in the Honam district. And the improvement in the predictability by the application of the LAPS system was confirmed by the experiment applied to Honam district local severe rain case of generating 22 July 2003. The results are as follows: 1) Precipitation amounts of Gwangju is strong associated with the strong in lower level from analysis of aerological data. This indicated the circulation field especially, 850hPa layer, acts important role to precipitation in Homan area. 2) Wind in coastal area tends to be stronger than inland area and radar data show the strong wind in conversions zone around front. 3) Radar data assimilation make the precipitation area be extended and maximum amount of precipitation be smaller. 4) In respect to contribution rate of different height wind field on precipitation variation, radar data assimilation of upper level is smaller than that of lower level.

Verification of current and wave data observed with X-band radar at an offshore wind substantiation farm in the Southwest Sea (서남해 해상풍력실증단지에서 X-Band Radar로 관측한 유동 및 파랑 자료 검증)

  • Seung-Sam Choi;Eun-Pyo Lim;Hyung-Rae Lee;Kwang-Seok Moon;In-Sung Jeon;MINSEUK KIM
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In order to respond to environmental changes and various events in the nearby sea area due to the operation of an offshore wind substantiation farm in the Southwest Sea, X-band radar has been installed and operated on a fixed platform since 2018. The X-band radar's monitoring system produces wave and current data through Rutter's Ocean WaveS wave and current (Sigma S6 WaMoS II). In this study, to verify the reliability of the produced data, the accuracy of current and wave data was evaluated by analyzing the correlation with the results obtained by an acoustic doppler current profiler (ADCP). The selected analysis period was a total of 30 days from November 29 to December 28, 2021, the period during which the ADCP survey was conducted. As a result of comparative verification, the current, wave height and peak wave period (Hs > 0.69 m) data observed from the X-band radar showed a high correlation with the results investigated from ADCP. In the future, current and wave data produced by X-band radar are expected to be used as basic data to analyze environmental changes in sea areas and provide information on various events.

The Comparison of Estimation Methods for the Missing Rainfall Data with spatio-temporal Variability (시공간적 변동성을 고려한 강우의 결측치 추정 방법의 비교)

  • Kim, Byung-Sik;Noh, Hui-Seong;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2011
  • This paper reviewed application of data-driven method, distance-weighted method(IDWM, IEWM, CCWM, ANN), and radar data method estimated of missing raifall data. To evaluate these methods, statistics was compared using radar and station rainfall data from Imjin-river basin. The range of RMSE values calculated for CCWM, ANN was 1.4 to 1.79mm, and the range of RMSE values estimated data used for radar rainfall data was 0.05 to 2.26mm. Spatial characteristics is considered to Radar rainfall data rather than station rainfall data. Result suggest that estimated data used for radar data can impove estimation of missing raifall data.

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.

A Suggestion for Data Assimilation Method of Hydrometeor Types Estimated from the Polarimetric Radar Observation

  • Yamaguchi, Kosei;Nakakita, Eiichi;Sumida, Yasuhiko
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2161-2166
    • /
    • 2009
  • It is important for 0-6 hour nowcasting to provide for a high-quality initial condition in a meso-scale atmospheric model by a data assimilation of several observation data. The polarimetric radar data is expected to be assimilated into the forecast model, because the radar has a possibility of measurements of the types, the shapes, and the size distributions of hydrometeors. In this paper, an impact on rainfall prediction of the data assimilation of hydrometeor types (i.e. raindrop, graupel, snowflake, etc.) is evaluated. The observed information of hydrometeor types is estimated using the fuzzy logic algorism. As an implementation, the cloud-resolving nonhydrostatic atmospheric model, CReSS, which has detail microphysical processes, is employed as a forecast model. The local ensemble transform Kalman filter, LETKF, is used as a data assimilation method, which uses an ensemble of short-term forecasts to estimate the flowdependent background error covariance required in data assimilation. A heavy rainfall event occurred in Okinawa in 2008 is chosen as an application. As a result, the rainfall prediction accuracy in the assimilation case of both hydrometeor types and the Doppler velocity and the radar echo is improved by a comparison of the no assimilation case. The effects on rainfall prediction of the assimilation of hydrometeor types appear in longer prediction lead time compared with the effects of the assimilation of radar echo only.

  • PDF