• Title/Summary/Keyword: Radar Control Unit

Search Result 33, Processing Time 0.022 seconds

Implementation of automatic gain control circuit for the gain control of receiving stage in pulse doppler radar (펄스 도플러 레이다의 수신단 이득 제어를 위한 자동 이득 조절 장치의 구현)

  • 김세영;양진모;김선주;전병태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.10-20
    • /
    • 1997
  • This paper describes the design, the manufacture and the development of th eautomatic gain control unit which ajdusts the gain of IF processor in the high sensitive & multifunctional receiver unit (HMR) for pulse doppler radar system. Accodording to the effective distnce of target, radar cross section, and a lot of external environments (such as clutter), the receiving stage of RADAR system often deviates from dynamic range. To solve this kind o fproblem, continuous/pulse wave AGC are realized, make it possible to control the gain characteristics of receiver stably, and can increase dynamic range linearly by adjusting the gain slope of receiver which is limited by 1-dB gain compression point. In this study, AGC unit is designed to regulate the total gain of receiver by using te analog feedback theory. It also has rapid enough response to process pulse signal. This study presents the gain control method of IF, the real manufacture technique (the package-type components) and the measurement performance of AGC.

  • PDF

A Study on Efficient Design of Surveillance RADAR Interface Control Unit in Naval Combat System

  • Dong-Kwan Kim;Dong-Han Jung;Won-Seok Jang;Young-San Kim;Hyo-Jo Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.125-134
    • /
    • 2023
  • In this paper, we propose an efficient surveillance RADAR(RAdio Detection And Ranging) interface control unit(ICU) design in the naval combat system. The proposed design applied a standardized architecture for modules that can be shared in ship combat system software. An error detection function for each link was implemented to increase the recognition speed of disconnection. Messages that used to be sent periodically for human-computer interaction(HCI) are now only transmitted when there is a change in the datagram. This can reduce the processing load of the console. The proposed design supplements the radar with the waterfall scope and time-limited splash recognition in relation to the hit check and zeroing of the shot when the radar processing ability is low due to the adoption of a low-cost commercial radar in the ship. Therefore, it is easy for the operator to determine whether the shot is hit or not, the probability of wrong recognition can be reduced, and the radar's resources can be obtained more effectively.

Algorithm Development of Level Crossing Obstacle Detection using Laser Radar Sensor (레이저레이더 센서를 이용한 철도 건널목 지장물 검지 알고리즘 개발)

  • Kim, Young-June;Baek, Jong-Hyen;Choi, Kyu-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1813-1819
    • /
    • 2013
  • Existing level crossing obstacle detecting system was installed using a laser beam. Level crossing obstacle detecting system using a laser beam that has been a problem in relation to safety and maintainability failure according to weather conditions. We proposed laser radar level crossing obstacle detecting system as a way to overcome problem, and we developed an algorithm for this. Level crossing obstacle detecting system using a laser radar sensor algorithm is robust to external environment and a shadow zone does not exist. Sensor part of the laser radar level crossing obstacle detecting system of these is made up by the image processing unit and laser radar sensor, it operations by receiving train entering information from the control unit. In this paper, we proposed a detecting algorithm with calculation of the size of the laser radar sensor. Based on this, we were performance test on the basis of the scenario by making a prototype. In the future, laser radar level crossing obstacle detecting system to ensure the safety and reliability through the field test.

Development of 2-Dimension Radar Distance Measurement System with 24 GHz Antenna Module and Its Performance Evaluation (24 GHz 안테나 모듈을 이용한 2차원 레이더 거리 측정 시스템 개발 및 성능 평가)

  • Go, Seok-Jo;Kim, Tae-Hoon;Cha, Byung-Soo;Park, Min-Kyu;Moon, Young-Gun;Yu, Ki-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.62-68
    • /
    • 2016
  • Laser distance measuring systems are used in many fields with high precision. However, when measuring the reflector such as the mirror and the black color, a laser distance measuring system does not guarantee the measurement accuracy. In order to measure the shape of the cargo, this study proposes the radar distance measurement system. The radar distance measuring system is composed of a distance measuring unit with a 24 GHz antenna module, a signal processing and control board and the 1-axis tilting unit. And, this study developed a monitoring program to monitor the measured data. In order to evaluate performance of the developed system, the distance measurement tests are carried out. The distance error was about 6-15 cm. However, considering the size of the cargo, the precision is not a problem. And, cargo shape was measured by using the distance information measured by the 1-axis tilting unit. It could get a 2 dimension shape profile for the cargo stacked in a yard.

Functional Testing of Level Crossing Obstruction Detecting System Using Laser Radar Sensor (레이저 레이더 센서를 이용한 건널목 지장물 검지장치의 기능시험)

  • Shin, Dong-Ho;Baek, Jong-Hyen;Choi, Hyeon-Yeong;Kim, Yong-Gyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.307-315
    • /
    • 2014
  • Existing level crossing obstruction detecting system occurs section of not detecting an obstruction by line detecting. Due to installation of decentralized equipment, it has become a problem in terms of safety and maintenance costs. accordingly, We have developed level crossing obstruction detecting system using laser radar sensor in order to solve these problems. In this paper, Describe results of functional test for the developed level crossing obstruction detecting system. functional tests are normal operation test(control unit and sensor unit) and test to display the fault information in event of a failure(control unit and sensor unit). It was confirmed that it works properly all according to functional test of level crossing obstruction detecting system using laser radar sensor.

Tunable Composite Right/Left-Handed Delay Line with Large Group Delay for an FMCW Radar Transmitter

  • Park, Yong-Min;Ki, Dong-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.166-170
    • /
    • 2012
  • This paper presents a tunable composite right/left-handed (CRLH) delay line for a delay line discriminator that linearizes modulated frequency sweep in a frequency modulated continuous wave (FMCW) radar transmitter. The tunable delay line consists of 8 cascaded unit cells with series varactor diodes and shunt inductors. The reverse bias voltage of the varactor diode controlled the group delay through its junction capacitance. The measured results demonstrate a group delay of 8.12 ns and an insertion loss of 4.5 dB at 250 MHz, while a control voltage can be used to adjust the group delay by approximately 15 ns. A group delay per unit cell of approximately 1 ns was obtained, which is very large when compared with previously published results. This group delay can be used effectively in FMCW radar transmitters.

The design and development of Control/Storage and TRX Module for Small Satellite Synthetic Aperture Radar Application (초소형위성 영상레이다를 위한 제어/저장 및 송수신 모듈의 설계 및 제작)

  • Lee, Juyoung;Kim, Hyunchul;Kim, Jongpil;Yu, Kyungdeok;Kim, Dongsik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.31-36
    • /
    • 2022
  • In this paper, we present the design, manufacture and test results of Backend unit for SAR(Synthetic Aperture Radar) that can be applied on a small satellite. The Backend unit for SAR was designed with a control/storage board, TRX(transmission and receiving) board and a power supply board as a single unit in consideration of the applying of a small satellite. The control/storage board uses RFSoC to generate wideband chirp signal, generate operating timings, and perform control and calculations for SAR operation. The TRX board is designed to convert the wideband chirp signal generated by the control/storage board to the operating frequency of X-band by up-converting the frequency. Since small size, light weight, and low cost are important consideration for small satellite, MIL/Industrial grade components were appropriately applied and the at the same time it was designed to ensure mission life through the radiation test, analysis and space environment tests.

Development of Integrated Test Equipment for Airborne SAR System and Control Unit (항공탑재 SAR 시스템 및 통제장치 시험을 위한 통합시험장비 개발)

  • Lee, Hyon-Ik;Hwang, Tae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.747-754
    • /
    • 2013
  • This paper describes SCTE(System and Control unit Test Equipment) as an integrated test equipment for airborne SAR system and control unit. SCTE enhances reusability of test equipment by modular design for required functions and strengthens automatic testing and test convenience by providing functions such as script-based testing function and report generation function. Also, it includes a navigation data simulator which can simulate various flight conditions. In this paper, we details SCTE requirements, H/W and S/W design, implementation, and test results with control unit and SAR system.

The Development of HILS and Test Equipment for Millimeter-Wave (Ka-Band) Seeker's Test and Evaluation (밀리미터파 탐색기 시험 평가를 위한 HILS 및 시험 장비 개발)

  • Song, Sung-Chan;Na, Young-Jin;Yoon, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • This paper describes the developed HILS and test equipment in order to test the performances of MMW(Millimeter-Wave) seeker which can detect and track a high speed of short-range ballistic missile and aircraft. This system is used to 141 horn antenna array, array switching, and gain and phase control algorithm to simulate various kind of targets and trajectory of high speed and maneuver moving target. In addition, it simulates not only velocity and range for these targets but also clutter and jamming environments. System configuration and implementation and the measurement results of major subsystems such as target motion simulator, simulation signal generator, high speed data aquisition unit, and central control unit are presented. These systems could verify the detection and tracking performance of MMW seeker through dynamic real-time test based on simulation flight scenario.

Miniaturization of Signal Processor of Airborne Tracking Radar (항공용 추적 레이더의 신호처리기 소형화 설계)

  • Kim, Doh-Hyun;Lee, Young-Sung;Lee, Hyung-Woo;Kim, Soo-Hong;Kim, Young-Chae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.114-117
    • /
    • 2002
  • The airborne tracking radar is located in front of aircraft or missile and measures and tracks a target motion. The signal processor receives target signals from a receiver using A/D converters, and calculates the target motion, and transfers the data to the aircraft or missile control unit. Since the signal processing system is required to be lightweight and small size as well as high performance to calculate and analyze the received signal, we use high speed DSPs and SMD type components having low power consumption. In this paper, we describe the design concept of signal processing system of the airborne tracking radar.

  • PDF