• Title/Summary/Keyword: Rac3

Search Result 138, Processing Time 0.024 seconds

GMI Magnetic Field Sensor based on Time-coded Principle

  • Cao, Xuan-Huu;Son, De-Rac
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.217-219
    • /
    • 2009
  • A GMI magnetic field sensor working based on time-coded principle has been investigated and designed. The laboratory model has been constructed and tested carefully, demonstrating the sensitivity of $3\;{\mu}s/{\mu}T$ in the field range of ${\pm}100\;{\mu}T$. An amorphous thin wire, $100\;{\mu}m$ in diameter ${\times}50\;mm$ in length, was chosen to be sensing element which was fit into a small field modulation coil of 60 mm in length. The sensor is working based on a time-coded principle that, with the magnetic field modulation was chosen in range of hundreds of Hz, the change in time interval of two adjacent GMI peaks relating to external DC magnetic field is proportional to the intensity of the external field to be measured. This mechanism has made a great improvement to the linearity of the sensor.

  • PDF

Pharmacokinetic Study on BR-28702-2, a New Anticancer Drug, in Rats (흰쥐에서의 신규 항암제 BR-28702-2의 체내동태)

  • 용철순;이신웅;전철수;채희상;신원섭;백우현
    • Biomolecules & Therapeutics
    • /
    • v.3 no.2
    • /
    • pp.97-103
    • /
    • 1995
  • The purpose of this study was to determine pharmacokinetic parameters of BR-28702-2, a new antineoplastic agent which is the conjugate of nucleotide and phospholipid, and to compare them with those of ara-C. Male rats were cannulated in the left femoral vein and received a single i.v. bolus dose of either BR-28702-2 or ara-C. BR-28702-2 was also administered i.p. and plasma samples were analyzed by reversedphase HPLC. The t$_{1}$2($\beta$)/ of ara-C(1.22 hr.) was significantly smaller than that of BR-28702-2(4.420 hr.). The absolute bioavailability of BR-28702-2 after i.p. injection was 1.125%. This lower bioavailability, together with previous reports that marked antineoplastic activity was observed when given i.p., indicates that BR-28702-2 would act as a depot system to release active moieties. Further works, therefore, need to be done to characterize active metabolites.

  • PDF

Analysis of the effect of trichloroacetic acid and epidermal growth factor release on cytoskeleton gene expression using the nano-controlled releasing system (나노방출제어시스템을 이용한 trichloroacetic acid와 epidermal growth factor 방출이 세포골격형성 유전자 발현에 미치는 영향 분석)

  • Park, Mi Jeong;Leesungbok, Richard;Lee, Suk Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.290-299
    • /
    • 2020
  • Purpose: Here, we verified that the actin cytoskeletal gene expression of human gingival fibroblasts was altered by the administration of trichloroacetic acid (TCA) and epidermal growth factor (EGF) using the nano-controlled releasing system. Materials and methods: The control and experimental groups were divided into 3 groups: the group with the TCA-only nano-controlled releasing system (EXP1), the group with the TCA- and EGF nano-controlled releasing system (EXP2), and the control group (CON) with 48-h incubation. Expression of 26 genes involved in the regulation of actin cytoskeleton were analyzed by real-time PCR followed by the determination of correlations and influential factors using the Pearson correlation analysis and multiple regression analysis. Results: Among 23 genes upregulated in EXP1 and EXP2, expression of 14 genes were significantly increased in EXP2 compared to EXP1. On the other hand, LPAR1 was downregulated only in EXP1, GNA13 was upregulated only in EXP2, and F2R was downregulated only in EXP2. Three Rac1-related genes and CDC42 were identified as the influential factors of the actin gene upregulation. Conclusion: The actin cytoskeleton genes in human gingival fibroblast were upregulated by the administration of TCA and EGF using HGC-based nano-controlled releasing system.

Effect of Soil Salinity and Soil-wetting by Summer-Rising of Water Table on the Growth of Fruit Trees Transplanted at the Saemangeum Reclaimed Tidal Land in Korea (새만금간척지의 토양염농도와 지하수위의 하계 상승이 이식한 과수의 생육에 미치는 영향)

  • Sohn, Yong-Man;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • The effect of soil salinity and soil-wetting by rise of water table on the growth of fruit trees was studied to obtain information for orchard establishment in the Saemangeum reclaimed tidal land. Survival ratio of trees was 85%for grape, 31%for fig, 15%for apple and pear, and near zero for peach and blueberry. Wet injury induced by water-logged or flooded condition, rather than salt injury(soil EC was lower than 3.0dS $m^{-1}$ during growing period) is thought to be more responsible for low survival ratio of fruit trees transplanted in Saemangeum area. During the summer raining season in the reclaimed areas, the soil salinity tends to be decreased by natural rainfall effect, and the rainfall acceptable capacity(RAC) of soils dramatically is reduced(10-24 mm) as rainfall is continued to occur. In spite of high hydraulic conductivity(121 cm $day^{-1}$) of soils across the area, low RAC of soils might be due to high soil saturation and elevated water table during summer raining season. Therefore, the installation of effective drainage system should be the primary factor determining successful establishment of orchard in the Saemangeum reclaimed tidal land.

Comparative Kinetic Studies of Two Staphylococcal Lipases Using the Monomolecular Film Technique

  • Sayari, Adel;Verger, Robert;Gargouri, Youssef
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.457-462
    • /
    • 2001
  • Using the monomolecular film technique, we compared the interfacial properties of Staphylococcus simulans lipase (SSL) and Staphylococcus aureus lipase (SAL). These two enzymes act specifically on glycerides without any detectable phospholipase activity when using various phospholipids. Our results show that the maximum rate of racemic dicaprin (rac-dicaprin) hydrolysis was displayed at pH 8.5, or 6.5 with Staphylococcus simulans lipase or Staphylococcus aureus lipase, respectively The two enzymes interact strongly with egg-phosphatidyl choline (egg-PC) monomolecular films, evidenced by a critical surface pressure value of around $23\;mN{\cdot}m^{-1}$. In contrast to pancreatic lipases, $\beta$-lactoglobulin, a tensioactive protein, failed to inhibit Staphylococcus simulans lipase and Staphylococcus aureus lipase. A kinetic study on the surface pressure dependency, stereoselectivity, and regioselectivity of Staphylococcus simulans lipase and Staphylococcus aureus lipase was performed using optically pure stereoisomers of diglycerides (1,2-sn-dicaprin and 2,3-sn-dicaprin) and a prochiral isomer (1,3-sn-dicaprin) that were spread as monomolecular films at the air-water interface. Both staphylococcal lipases acted preferentially on distal carboxylic ester groups of the diglyceride isomer (1,3-sn-dicaprin). Furthermore, Staphylococcus simulans lipase was found to be markedly stereoselective for the sn-3 position of the 2,3-sn-dicaprin isomer.

  • PDF

nArgBP2 as a hub molecule in the etiology of various neuropsychiatric disorders

  • Lee, Sang-Eun;Chang, Sunghoe
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.457-458
    • /
    • 2016
  • Recent studies have strongly implicated postsynaptic scaffolding proteins such as SAPAP3 or Shank3 in the pathogenesis of various mood disorders, including autism spectrum disorder, bipolar disorder (BD), and obsessive-compulsive disorders. Neural Abelson-related gene-binding protein 2 (nArgBP2) was originally identified as a protein that interacts with SAPAP3 and Shank3. Recent study shows that the genetic deletion of nArgBP2 in mice leads to manic/bipolar-like behavior resembling symptoms of BD. However, the function of nArgBP2 at synapse, or its connection with the synaptic dysfunctions, is completely unknown. This study provides compelling evidence that nArgBP2 regulates the spine morphogenesis through the activation of Rac1/WAVE/PAK/cofilin pathway, and that its ablation causes a robust and selective inhibition of excitatory synapse formation, by controlling actin dynamics. Our results revealed the underlying mechanism for the synaptic dysfunction caused by nArgBP2 downregulation that associates with analogous human BD. Moreover, since nArgBP2 interacts with key proteins involved in various neuropsychiatric disorders, our finding implies that nArgBP2 could function as a hub linking various etiological factors of different mood disorders.

Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells

  • Oh, Mihee;Kim, Sun Young;Byun, Jeong-Su;Lee, Seonha;Kim, Won-Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Bae, Kwang-Hee;Lee, Sang Chul;Han, Baek-Soo
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.626-631
    • /
    • 2021
  • Janus kinase 2 (JAK2), a non-receptor tyrosine kinase, is a critical component of cytokine and growth factor signaling pathways regulating hematopoietic cell proliferation. JAK2 mutations are associated with multiple myeloproliferative neoplasms. Although physiological and pathological functions of JAK2 in hematopoietic tissues are well-known, such functions of JAK2 in the nervous system are not well studied yet. The present study demonstrated that JAK2 could negatively regulate neuronal differentiation of mouse embryonic stem cells (ESCs). Depletion of JAK2 stimulated neuronal differentiation of mouse ESCs and activated glycogen synthase kinase 3β, Fyn, and cyclin-dependent kinase 5. Knockdown of JAK2 resulted in accumulation of GTP-bound Rac1, a Rho GTPase implicated in the regulation of cytoskeletal dynamics. These findings suggest that JAK2 might negatively regulate neuronal differentiation by suppressing the GSK-3β/Fyn/CDK5 signaling pathway responsible for morphological maturation.

Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination (아미노불소화 반응에 의한 활성탄소전극 제조 및 전기화학적 특성)

  • Lim, Jae Won;Jeong, Euigyung;Jung, Min Jung;Lee, Sang Ick;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • High-performance of an electric double layer capacitance (EDLC) electrode was prepared by the amino-fluorination of activated carbon by using $NF_3$ gas. The pore structure and surface chemistry were investigated based on the specific capacitance of EDLC. The amino-fluorination of activated carbon introduced functional groups of nitrogen and fluorine which are beneficial for the specific capacitance of EDLC without the change of pore structures. The E-NF100AC electrode, which has nitrogen and fluorine functional groups less than 1 at%, showed the highly improved specific capacitance of 528 (${\pm}9$) F/g at 2 mV/s showing 122% improved value when comparing with that of non-functionalized E-RAC electrodes. Whereas, the E-NF200AC electrode, which has nitrogen and fluorine functional groups over 1 at%, showed the decreased specific capacitance because of perfluorinated introduction. So, it is concluded that the proper contents of nitrogen and fluorine groups improved the specific capacitance of EDLC.

Evidence for the Ras-Independent Signaling Pathway Regulating Insulin-Induced DNA Synthesis

  • Jhun, Byung-H.
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.196-202
    • /
    • 1999
  • The existence of the Ras-independent signal transduction pathway of insulin leading to DNA synthesis was investigated in Rat-1 fibroblasts overexpressing human insulin receptor (HIRc-B) using the single-cell microinjection technique. Microinjection of a dominant-negative mutant $Ras^{N17}$ protein into quiescent HIRc-B cells inhibited the DNA synthesis stimulated by insulin. Microinjection of oncogenic H-$Ras^{V12}$ protein ($H-Ras^{V12}$) (0.1 mg/ml) induced DNA synthesis by 35%, whereas that of control-injected IgG was induced by 20%. When the marginal amount of oncogenic H-$Ras^{V12}$ protein was coinjected with a dominant-negative mutant of the H-Ras protein ($Ras^{N17}$), DNA synthesis was 35% and 74% in the absence and presence of insulin, respectively. This full recovery of DNA synthesis by insulin suggests the existence of the Ras-independent pathway. The same recovery was observed in the cells coinjected with either H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus SH2 domain of the p85 subunit of PI3-kinase ($p85^{SH2-N}$) or H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus interfering anti-Shc antibody. When co-injected with a dominant-negative H-$Ras^{N17}$, the DNA synthesis induced by the Ras-independent pathway was blocked. These results indicate that the Ras-independent pathway of insulin leading to DNA synthesis exists, bypassing the p85 of PI3-kinase and Shc protein, and requires Rac1 protein.

  • PDF

Construction of Differential Type Search Coil Magnetometer (차동형 탐지코일 마그네토미터 제작)

  • Kim, J.H.;Son, De-Rac
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.178-181
    • /
    • 2010
  • Search coil magnetometer has been used for detection of ac magnetic field with high sensitivity. To reduce demagnetizing factor of core and increase S/N ratio of search coil magnetometer, the core was divided by two parts and coil was wound on each cores. Two coils were connected serially and put into amplifier as differential mode. Constructed 120 mm length search coil magnetometer shows linearity of 0.03%, sensitivity of 9.3 mV/nT, and resolution of 20 pT at 1 Hz.