• Title/Summary/Keyword: Rabbit platelets

Search Result 25, Processing Time 0.02 seconds

Effect of Iron Excess-induced Oxidative Stress on Platelet Aggregation (과잉 철로 유도된 산화적 스트레스가 혈소판 활성화에 미치는 작용)

  • Seo, Geun-Young;Park, Hyo-Jin;Jang, Sung-Geun;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.979-984
    • /
    • 2006
  • Although iron is essential for many physiological processes, excess iron can lead to tissue damage by promoting the generation of reactive oxygen species (ROS). There is increasing evidence that ROS might play an important role in the pathogenesis of cardiovascular disease. However, the effects of iron excess on platelet function and the thrombotic response to vascular injury are not well understood. We examined the effects of iron excess-induced oxidative stress and the antioxidants on platelet aggregation. Oxidative stress was accessed by either free iron $(Fe^{+2})$ or hydrogen peroxide $(H_2O_2)$, as well as their combination on washed rabbit platelets (WPs) in vitro. When WPs were stimulated with either $Fe^{+2}$ alone or a subthreshold concentration of collagen, which gave an aggregatory curve with a little effect, and a dose dependent increase in platelet aggregation was observed by increasing concentrations of $Fe^{+2}$ with $H_2O_2$. This aggregation was associated with the iron-catalyzed formation of hydroxyl radicals from $H_2O_2$, and were inhibited by NAD/NADP (proton acceptor), catalase $(H_2O_2\;scavenger)$, tiron (iron chelator), mannitol (hydroxyl radical scavenger), and indomethacin (cyclooxygenase inhibitor), but not by NADH/NADPH (proton donor), superoxide mutase, and aspirin. However, NADH/NADPH, an essential cofactor for the antioxidant capacity by the supply of reducing potentials, showed the effect of an enhanced radical formation, suggesting a role for NADH/NADPH-dependent oxidase. These results suggest that iron $(Fe^{+2})$ can directly interact with washed rabbit platelets and this aggregation be mediated by OH formation as in the Fenton reaction, inhibited by radical scavengers.

Comparison of Antiplatelet Activities of Green Tea Catechins

  • Cho, Mi-Ra;Jin, Yong-Ri;Lee, Jung-Jin;Lim, Yong;Kim, Tack-Joong;Oh, Ki-Wan;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We have previously reported that green tea catechins(GTC) displayed potent antithrombotic effect, which was due to the antiplatelet activity. In the present study, the antiplatelet activity of each green tea catechin components was compared in vitro. Galloylated catechins including (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), significantly inhibited collagen $(5{\mu}g/mL)-induced$ rabbit platelet aggregation with $IC_{50}$ values of 79.8, 63.0, 168.2 and $67.3{\mu}M$, respectively. EGCC GCG and CG also significantly inhibited arachidonic acid (AA, $100{\mu}M$)-induced rabbit platelet aggregation with $IC_{50}$ values of 98.9, 200.0 and $174.3{\mu}M$, respectively. However catechins without gallate moiety showed little inhibitory effects against rabbit platelet aggregation induced by collagen or AA compared with galloylated catechins. These observations suggest that the presence of gallate moiety at C-3 position may be essential to the antiplatelet activity of catechins and the presence of B ring galloyl structure may also contribute to the antiplatelet activity of GTC. In line with the inhibition of collagen-induced platelet aggregation, EGCG caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation and serotonin secretion. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, although slightly inhibited collagen-stimulated cytosolic calcium mobilization, failed to affect other signal transductions as EGCG in activated platelets. Taken together, these observations suggest that the antiplatelet activity of EGCG may be due to inhibition of arachidonic acid liberation and inhibition of $Ca^{2+}$ mobilization and that the antiplatelet of EGCG is enhanced by the presence of a gallate moiety esterified at carbon 3 on the C ring.

EFFECT OF PLATELET-RICH PLASMA ON AUTOGENOUS BONE GRAFT FOR BONE FORMATION IN RABBIT (가토 하악골 결손부의 자가골 이식시 혈소판 풍부혈장이 골형성 촉진에 미치는 영향에 관한 연구)

  • Jeon, Min-Su;Kim, Bo-Gyun;Song, Jun-Ho;Yeon, Byong-Moo;Lee, Young-Woo;Noh, Kyung-Lok;Kim, Da-Young;Pang, Ean-O;Kim, Jun-Hyun;Nam, Jeong-Hun;Gang, Tae-In;Lim, Sung-Chul;Park, Young-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Purpose : Recently, various materials were developed for enhancing bone formation capacity. Platelet rich plasma(PRP) is an autologous source with several growth factors and obtained by sequestering and concentrating platelets by gradient density centrifugation. This study was to evaluate the effect of PRP on healing of grafted bone. Materials and methods : Two blood samples were obtained and analysed for measuring platelet counts of normal blood and PRP. In experimental group, two defects of mandibular bone, 10mm in diameter and 4.0mm deep, were created in the mandible and immediately grafted with autogenous bone chips mixed with PRP. In control group, same bone defects were prepared and grafted with autogenous bone chips. Gelform was used for carrier of PRP. 2 weeks, 4 weeks, 8 weeks later, each group was evaluated with histologi-cal and histomorphometric analyses. Results : According to histological observation, experimental group was showed more anastomosing newly-formed woven bone having osteoblastic activation than control group. According to histomorphometric analysis, there were 9.11% more newly-formed bone volume in experimental group than control group at 2 weeks, 7.91% more at 4 weeks, 20.08% more at 8 weeks. Conclusion: Our results demonstrated PRP in autogenous bone graft could enhance the bone formation.

Study on Role of Platelet Aggregation in Cerebrovascular Disease (뇌졸중증(腦卒中症)에 있어서 혈소판(血少板) 응집( 凝集)의 역할에 관한 연구(硏究))

  • Hong, Ki-Whan;Lee, Won-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.15-25
    • /
    • 1982
  • It was undertake to investigate the factors involved in the micro thrombus formation in the plasma from the patients with cerebrovascular disease(CVD) and the in vitro actions of sodium nitroprusside on the platelet aggregate formation. 1) The microthrombus formation in the plasma from CVD was significantly enhanced, in comparison with that from the healthy volunteers. 2) Both lipid peroxide and cathepsin D in the plasma from CVD were higher than those levels from the healthy volunteers. 3) Whereas the platelets from healthy individuals showed less aggregation activity in response to ADP in the second phase those from CVD revealed the enhanced aggregating response to ADP. 4) When the bovine basilar artery, rabbit aorta and human umbilical artery were pretreated with $K^+-free$ PSS, ouabain, 13-hydroperoxylinoleic acid(13-HPLA) and cadmium they markedly enhanced the platelet aggregability respectively. 5) Platelet aggregation induced by $K^+-free$ PSS-treated bovine basilar artery was decreased by sodium nitroprusside in a dose-dependent manner, but not by either hydralazine. 6) Both dibutyryl cyclic AMP and 8-bromo cyclic GMP had the inhibitory action on the platelet aggregation. However, the latter had more prominent action than former. The antiaggregating effect by sodium nitroprusside was antagonized by pretreatment with methylene blue, but not by hemoglobin. These results provide the evidences for the therapeutic use of sodium nitroprusside in the emergency of cerebrovascular disease and in remains the further study of the clinical therapy with it.

  • PDF

Anti-Platelet Aggregating Effect of Solvent Extracts from Korean Soybean Varieties and Isoflavone Derivatives (품종별 국산콩 추출물 및 Isoflavone 유도체의 혈소판 응집억제작용)

  • Jang, Mi-Jeong;Kang, Myung-Hwa;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.9
    • /
    • pp.1320-1324
    • /
    • 2005
  • Soybean (Glycine max L.) is an increasingly important food source and functional food. Platelet aggregation plays an important role in thrombogenesis and atherosclerosis. Here, we studied the anti-platelet aggregating effects of solvent extracts from Korean soybean varieties and isoflauone derivatives. Nine Korean soybean varieties were extracted by solvents (methanol and buthanol and their extracts was investigated for the inhibition against tile aggregation of washed rabbit platelets induced by collagen or thrombin. Maximal inhibition of buthanol extracts against platelet aggregation induced by collagen was $95\%$ in Black-kong and Jinpum - kong. The potency of their inhibition was in the following order : Black > Jinpum > Bokwang > Hwangkum > Pureun > Malli > Danbaek > Danyeob > Jangsu - kong. The Black - kong only seemed to produce the maximal inhibition against platelet aggregation induced by thrombin. Total isoflavone content measured was Jinpum-kong ($1347.8{\mu}g/g$) and Black-kong ($918.7{\mu}g/g$). Maximal inhibition of isoflavone derivatives against platelet aggregation induced by collagen was $97\%$ in genistein. The potency of their inhibition was in the following order: genistein>daidzein>genistin. The isoflavone derivatives did not affect the platelet aggregation induced by thrombin. However, Black-kong cortex seemed to Produce the optimal inhibition against platelet aggregation induced by collagen. These results suggest that Black-kong and Jinpum-kong may be a good source for antiplatelet agents, and their antiplatelet effect be related to tile content and the chemical structure with the number of -OH group and the attached glycoside in the isoflavone derivative.